ISS2017 Program Book

30th INTERNATIONAL SYMPOSIUM ON SUPERCONDUCTIVITY

December 13–15, 2017 lino Hall & Conference Center, Tokyo, Japan

CONTENTS

Greetings 1
General information 2
Information for presentation
Organazation ······ 6
Committees ······ 8
Floor plan of the symposium site
Exhibitors 11
Scientific Program 20
Schedule and Timetable 23
Panel discussion and Domestic lunch meeting 25
Oral session 26
Poster session 56
Correspondence 99

Greetings

It is my great pleasure to announce that the commemorative 30th International Symposium on Superconductivity (ISS2017) will be held this year, organized by the National Institute of Advanced Industrial Science and Technology (AIST). The ISS has been held annually since the first Symposium, which was held in 1988 after the discovery of copper-oxide-based high-temperature superconductors.

At present, superconducting technologies are already used in a variety of fields. The most popular application is MRI (Magnetic Resonance Imaging) devices that are installed in almost all major hospitals. Superconducting magnets for generating high magnetic fields are also used in NMR (Nuclear Magnetic Resonance) machines and maglev trains. SQUID (Superconducting QUantum Interference Device) systems that can measure ultra-low magnetic fields are applied to medical devices (magnetoencephaloraphy and magnetocardiography) and to exploration of underground natural resources. The discovery of oxide-based hightemperature superconductors (HTS) and metal-based MgB₂ superconductors has widely expanded the possibility of applications. To answer the urgent societal need for energy saving, HTS power transmission cables are to be introduced in railway feeder cables. Demonstration of a low-cost, lightweight superconducting wind turbine generator is scheduled to be done in several years.

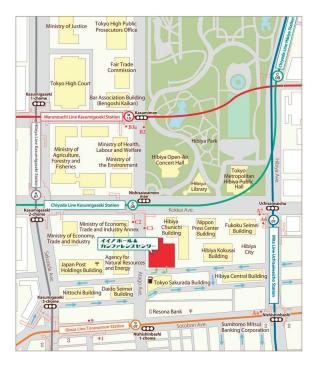
Last year AIST inaugurated a research consortium on superconductivity: the Applied Superconductivity Constellations of Tsukuba (ASCOT). ASCOT, composed of 21 private organizations and 8 national universities/institutes (including AIST), aims to develop superconducting technologies into practical products and systems used in our society, and to foster young researchers who may contribute to the future of this technology. In this context, ASCOT greatly supports ISS2017.

I sincerely hope that this commemorative symposium will gather many scientists, engineers, academic students, corporate executives and other participants from all over the world, and will facilitate fruitful discussions to promote superconductivity technologies.

April 20, 2017

Toshihiko Kanayama General Chair, ISS2017

General Information


Period

December 13-15, 2017

Venue

Iino Hall & Conference Center, Chiyoda-ku, Tokyo, Japan Iino Hall, Conference Center Rooms A, B, C, D and E located at the 4th floor of the Iino Building Phone: 03-3506-3251

Web: http://www.iino.co.jp/kaiun/english/estate/iinohall.html

Official language

English

On-site registration

Wednesday, Dec. 13,	8:45-11:00	Hall Lobby
	11:30-18:30	Foyer A
Thursday, Dec. 14,	8:45 - 9:30	Hall Lobby
	10:00-17:00	Foyer A
Friday, Dec. 15,	8:45 - 9:30	Hall Lobby
	10:00-13:30	Foyer A

Get together for ISS 30th anniversary -celebrating 30th year of ISS with free drinks

Iino Conference Center Room A3 Wednesday, December 13, 18:30–19:10

Banquet

Iino Conference Center Room A1+A2, \$5,000 per person Wednesday, December 13, 19:10–20:30

Web site

http://iss2017.tokyo/

Internet service

Free Wi-Fi available, ID: iino-hall, Password: iinohall10

Name card

On the resistration desk, you will obtain your name card. You are requested to **wear your name card** in the symposium sites all the time.

Scope

The 30th International Symposium on Superconductivity (ISS2017) will consist of oral and poster sessions, covering the latest findings and related topics in the following research fields of superconductivity science and technology.

(a) Physics and Chemistry (PC)

Novel Materials, Materials chemistry, Fundamental physical properties (bulk, single crystal and thin film), Vortex physics, Theory

(b) Wires and Bulk (WB)

Materials and processing, critical currents, mechanical properties, AC Loss and electro-magnetic stability for wires, tapes and bulk superconductors, including artificial pinning centers, multi-filamentary approach and superconducting joints

(c) Electronic Devices (ED)

Digital and mixed-signal circuits, Detectors and readout, SQUIDs, High-frequency devices, Quantum information technology, Novel devices, Materials and fabrication, System applications

(d) Large Scale System Applications (AP)

Magnets (for high energy physics, medical systems etc.), Electric power devices (cable, current limiter, transformer, SMES, others), Rotating machines, Magnetic levitation and propulsion, Medical systems etc. using HTS and LTS materials

Information for presentation

Instruction for oral presentation

The official language of the symposium is **English**. Only papers presented by authors are considered for publication in the proceedings. **An LCD projector** will be available in each session room. You can use **your own computer with mini Dsub-15 I/O pins**, or **the computer prepared by the secretariat**. Requirements for author's own computers and installed software on the computer prepared by the secretariat are as follows.

Requirements for your own PC

I/O connector	RGB mini D-sub 15 pins
Display resolution	XGA (1024x768)*
Electric power supply	AC 100V (50Hz) Flat-pin, two-prong plugs

*Other resolutions such as WXGA (1280x800) may be used for the projector, but the presenter must confirm normal operations beforehand.

Installed software on the secretariat's computer

OS	Windows 10 Pro (English, 64 bit)
Application	MS Power Point 2013
software	Adobe Acrobat Reader

If you plan to use the secretariat's computer, you are strongly recommended to install your data in the secretariat's computer before starting the session or during the coffee break. Please contact a staff member at a session room or the ISS2017 headquarter if you have any questions.

Presentation times for various presentations are described as follows.

Presentation times

Plenary lectures	40 min	
Invited talks (30 years, PC)	30 min	Including 5
Invited talks (WB, ED, AP)	25 min	min discussion
Invited talks (LN), Contributed presentations (ED, AP)	20 min	
Contributed presentations (PC, WB)	15 min	Including 3 min discussion

Instructions for Poster Presentation

Only papers presented by authors are considered for publication in the proceedings. The attendance should be confirmed by chairpersons of the poster session.

The available space is 90 cm wide and 210 cm high. Please mount your material on the panel that your presentation ID is posted on. All the material should be described in English. Captions are required for all figures, photographs and tables. Thumbtacks will be available from the symposium secretariat.

	December 13	December 15
Mounting	15:00-16:00	12:40-13:45
Poster session	16:00-18:00	13:45-15:45
Removing	18:00-18:10	15:45 - 15:55

Schedule for poster presentations

Withdrawal

If you want to withdraw your presentation for some reasons, please inform the ISS2017 secretariat in advance.

Organization

General chair

Dr. Toshihiko Kanayama Fellow, National Institute of Advanced Industrial Science and Technology (AIST)

Local organizing committee

Secretary-General: Michiya Okada, TIA Central Office, AIST

Members:

Haruhiko Obara, Fumio Takemura, Teruhisa Horita, Mitsuho Furuse (Department of Energy and Environment, AIST)

Satoshi Haraichi, Masataka Ohkubo, Mutsuo Hidaka, Yoshiyuki Yoshida, Shigeyuki Ishida, (Advisor) Akira Iyo (Department of Electronics and Manufacturing, AIST)

Susumu Ogawa, Hirofumi Yamasaki, Haruko Okazaki (TIA Central Office, AIST)

Supported by

Applied Superconductivity Constellations of Tsukuba (ASCOT)

TIA-a platform for open innovation

Ministry of Economy, Trade and Industry (METI)

Ministry of Education, Culture, Sports, Science and Technology (MEXT)

New Energy and Industrial Technology Development Organization (NEDO)

Japan Science and Technology Agency (JST)

Cryogenics and Superconductivity Society of Japan (CSSJ)

The Japan Society of Applied Physics (JSAP)

The Institute of Electrical Engineers of Japan (IEEJ)

ASCOT members (as of October 28, 2017)

Applied Superconductivity Constellations of Tsukuba (ASCOT)

—founded by the National Institute of Advanced Industrial Science and Technology (AIST) in May 2016

Private Companies:

Hitachi. Ltd. Mitsubishi Electric Corporation JEOL Ltd.; Tokyo Electric Power Company Holdings, Inc. Tohoku Electric Power Co., Inc. Chubu Electric Power Co., Inc. The Kansai Electric Power Co., Inc. The Chugoku Electric Power Co., Inc. Kyushu Electric Power Co., Inc. Fujikura Ltd. Sumitomo Electric Industries, Ltd. Furukawa Electric Co., Ltd. SWCC Showa Cable Systems Co., Ltd. Taiyo Nippon Sanso Corporation MAYEKAWA MFG. Co., Ltd. Sumitomo Heavy Industries, Ltd. Suzuki Shokan Co., Ltd. JECC TORISHA Co., Ltd. Fujihira Co., Ltd. Central Research Institute of Electric Power Industry IMRA Material R&D Co., Ltd.

Academic Members:

The University of Tokyo Kyoto University Kyushu University University of Tsukuba National Institute for Materials Science (NIMS)

Committees

International advisary committee

PC: Physics and Chemistry

Hideo Aoki (The Univ. of Tokyo) Wai-Kwong Kwok (Argonne National Laboratory) Satoshi Okuma (Tokyo Inst. of Technology) Setsuko Tajima (Osaka Univ.) Hai-Hu Wen (Nanjing Univ.)

WB: Wires and Bulk

David Cardwell (Univ. of Cambridge) Leonardo Civale (Los Alamos National Laboratory) Michael Eisterer (Vienna Univ. of Technology) Timothy J. Haugan (Air Force Research Laboratory) Bernhard Holzapfel (Karlsruhe Inst. of Technology) Teruo Izumi (AIST) Hiroaki Kumakura (National Inst. for Materials Science) David Larbalestier (Florida State Univ.) Qiang Li (Brookhaven National Laboratory) Xavier Obradors (Inst. Ciencia de Materials de Barcelona) Venkat Selvamanickam (Univ. of Houston) Michael Sumption (Ohio State Univ.) Yutaka Yoshida (Nagoya Univ.)

ED: Electronic Devices

Pascal Febvre (Univ. of Savoie Mont Blanc) Mutsuo Hidaka (AIST) Masataka Ohkubo (AIST) Horst Rogalla (Univ. of Colorado at Boulder) Keiichi Tanabe (SUSTERA) Zhen Wang (SC2 & SIMIT, Chinese Academy of Sciences)

AP: Large Scale System Applications

Bob Buckley (Victoria Univ. of Wellington) Toru Fukushima (SuperPower Inc.) Mathias Noe (Karlsruhe Inst. of Technology) Hiroyuki Ohsaki (The Univ. of Tokyo) Minwon Park (Changwon National Univ.) Christopher M. Rey (Energy-to-Power Solutions) Pascal Tixador (Grenoble-INP) Liye Xiao (Chinese Academy of Sciences)

Program Committee

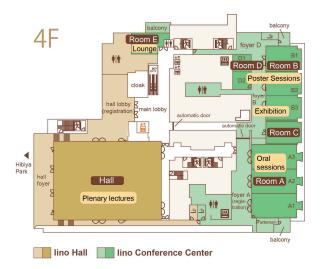
(PC) Co-Chair: Atsutaka Maeda (The Univ. of Tokyo) Sub-Chair: Hiraku Ogino (AIST)

Ryotaro Arita (RIKEN) Takekazu Ishida (Osaka Prefecture Univ.) Minoru Nohara (Okayama Univ.) Tsutomu Nojima (Tohoku Univ.) Takao Sasagawa (Tokyo Inst. of Technology) Takasada Shibauchi (The Univ. of Tokyo) (Advisor) Hiroshi Eisaki (AIST) (Advisor) Akira Iyo (AIST)

(WB) Co-Chair: Yoshiyuki Yoshida (AIST) Sub-Chair: Yasuhiro Iijima (Fujikura Ltd.)

Satoshi Awaji (Tohoku Univ.) Hiroshi Ikuta (Nagoya Univ.) Takeshi Kato (Sumitomo Electric Industries, Ltd.) Takanobu Kiss (Kyushu Univ.) Akiyoshi Matsumoto (National Inst. for Materials Science) Kaname Matsumoto (Kyushu Inst. of Technology) Jun-ichi Shimoyama (Aoyama Gakuin Univ.) Hideki Tanaka (Hitachi Ltd.)

(ED) Co-Chair: Mutsuo Hidaka (AIST) Sub-Chair: Tsunehiro Hato (Superconducting Sensing Technology Research Association)

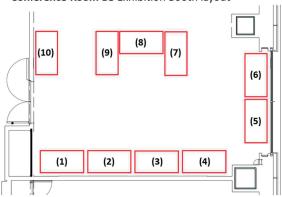

Yoshimi Hatsukade (Kinki Univ.) Masashi Ohno (The Univ. of Tokyo) Shigeo Sato (Tohoku Univ.) Naoto Sekiya (Yamanashi Univ.) Masamitsu Tanaka (Nagoya Univ.) Hirotake Yamamori (AIST) (Advisor) Masataka Ohkubo (AIST)

(AP) Co-Chair: Naoyuki Amemiya (Kyoto Univ.) Sub-Chair: Tsuyoshi Wakuda (Hitachi Ltd.)

Kazuhiro Kajikawa (Kyushu Univ.) Shinji Matsumoto (National Inst. for Materials Science) Shin-ichi Mukoyama (Furukawa Electric Co., Ltd.) Naoko Nakamura (MAYEKAWA MFG. Co., Ltd.) Taketsune Nakamura (Kyoto Univ.) Tetsuo Oka (Niigata Univ.) Tomonori Watanabe (Chubu Electric Power Co., Inc.) Shoichi Yokoyama (Mitsubishi Electric Corporation) (Advisor) Mitsuho Furuse (AIST)

Floor plan of the symposium site

The plenary lectures and some oral presentations (30 years) of ISS2017 are held in the **lino Hall**. Other sessions (oral and poster) are held at rooms in **lino Conference Center**. **lino Hall and Conference Center** is located on **the 4th floor of the lino Building**.


How to go to the Iino Hall and Conference Center

You can use an exclusive-use escalator that goes directly from the 1^{st} floor to the 4^{th} floor. You may also use an elevator that goes directly from the Iino Dining area (B1 floor) to the 4^{th} floor.

Exhibitors

Layout plan of the Exhibition

Conference Room B3 Exhibition Booth layout

Booth assignment

- (1) Fujikura Ltd.
- (2) Advanced Conductor Technologies LLC
- (3) Furukawa Electric Co., Ltd.
- (4) Superconducting Sensing Technology Research Association
- (5) SuperOX Japan LLC
- (6) Shanghai Superconductor Technology Co., Ltd.
- (7) CAN SUPERCONDUCTORS
- (8) Western Superconducting Technologies Co., Ltd.
- (9) TOSHIMA Manufacturing. Co., Ltd.
- (10) Quantum Design Japan, Inc.

Exhibitors

Booth 1 Fujikura Ltd.

1-5-1, Kiba, Koto-ku, Tokyo 135-8512, Japan. http://www.fujikura.co.jp/eng/

Fujikura Ltd., has been the global leader of developing rare-earthbased 2nd Generation

High-Temperature Superconducting wires over 20 years. We sustain this title by producing best performancewire with higher critical current, longerpiece length and higheruniformity for longitudinal critical current distribution. Prospective applications of our superconducting wires are now widely spread from electrical/industrial equipment to medical and measuring instruments. Our Superconducting wires are committed to not only be improving quality of human life but also have great potential for industrial innovation and saving natural resources.

Booth 3 Furukawa Electric Co., Ltd.

Furukawa / Superpower

Furukawa Electric, incorporating Superpower Inc., is a global corporation enabling the energy, industrial, automotive and communications markets. Presenting at ISS2017 high performance 2nd Generation HTS tapes (excelling in in-field application) and innovative, application specific NbTi and Nb₃Sn wires, designed and produced to highest quality

http://www.furukawa.co.jp/en/ 2-3,Marunouchi 2-chome, Chiyodaku, Tokyo 100-8322, Japan.

http://www.superpower-inc.com 450 Duane Avenue, Schenectady, NY 12304 USA.

Booth 2 Advanced Conductor Technologies LLC

3082 Sterling Circle, Unit B Boulder, CO 80301, USA. info@advancedconductor.com +1-720-408-0105 www.advancedconductor.com

Advanced Conductor Technologies' CORC[®] technology opens the door to new markets that require flexible, high-current density power transmission cables and wires.

High-temperature superconducting CORC[®] cables and wires also enable practical high-field magnets that operate at magnetic fields above 20 Tesla, or at temperatures exceeding 20 Kelvin.

Exhibitors

Booth 4 Superconducting Sensing Technology Research Association (SUSTERA)

2-11-19 Minowa-cho, Kohoku-ku, Yokohama, Kanagawa, Japan.

http://www.sustera.or.jp/index-e.html

SUSTERA established in February 2016 is a non-profit organization which aims at development of various systems using HTS-SQUIDs and their industrialization with member companies (Fujitsu Ltd., The Chugoku Electric Power Co., Inc., and Mitsui Mining & Smelting Co., Ltd.). SUSTERA also supplies some products such as HTS-SQUID chips.

<Development>

- $\boldsymbol{\cdot}$ Road inspection system for steel deck plate (JST-SIP project) $_{a)}$
- SQUID magnetometer system for use in a deep well (JOGMEC EOR monitoring project) ^{b)}
- TEM systems for exploration of natural resources (JOGMEC)
- · Magnetic immunoassays system (JST project)

<Products>

- HTS-SQUID chips (gradiometer, magnetometer) ^{c)}
- Compact cryostat for HTS-SQUIDs ^{d)}
- Temperature control system

Booth 5 SuperOx Japan LLC

http://www.superox.co.jp

Parameter	Value											
Production length	up to 750 m											
Substrate thickness	60 or 100 μm											
Ag layer thickness	1 to 10 μm											
Copper layer thickness	0 to 100 μm											
Tensile strength (95% of Ic retained)	>500 MPa / 0.55% deformation											
Critical bend diameter		22 mm										
Tape width	4 mm	6 mm	12 mm									
Critical current at 77 K, s.f.	100 to 150 A	100-200 A	300 to 500 A									
Current uniformity	± 10%	± 10 %	± 10 %									

SuperOx Japan LLC is producing and selling conventional 2G high-Tc (HTS) superconducting wires and developing new advanced HTS tapes including narrow, stacked, various laminated tapes and Roebel cable.

As a part of the SuperOx group, SuperOx Japan actively participates in the joint R&D and commercial projects such as 220kV SFCL construction and installation in Moscow grid.

The essential information about our product and company activities will be exibited in the poster and in multimedia presentation. The line of our commercial products and samples on the stage of development

will be displayed in our booth.

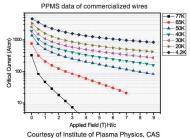
Sagamihara Incubation Center (SIC-3), 1880-2 Kamimizo, Chuoku, Sagamihara, Kanagawa 252-0243, Japan. Tel.+81-42-707-7077

Exhibitors

Booth 6 Shanghai Superconductor Technology Co. Ltd

www.shsctec.com

Shanghai Superconductor Technology Co., Ltd (SSTC) employs physical vapour deposition and manufactures custom, cost effective 2G-HTS wires with superior mechanical properties and world leading critical current



densities especially at high magnetic field and low temperature. The company also provides peripheral products and services including coil winding (machines) and vacuum deposition systems.

Customizable Parameters	Typical Values
Substrate(Hastelloy™)	50 µm / 100 µm
Width	1-10 mm
Piece Length	1-300 m
Critical Current (77 K, s.f.)	250-350 A/cm-w
Critical Current (4.2 K, 12 T)	600-800 A/cm-w
Copper Stabilizer	2-25 µm per side
Lamination Material	Copper/Stainless Steel
Lamination Thickness	75-150 µm per side
Joint Resistance	25 nΩ·cm ²
Critical Tensile Stress	400-600 MPa
Others	Tailored to specific requirements

Wire Specifications

Superior In-field Performance

Amos HONG +86 1364 2357 543 yiming.hong@shsctec.com

Bldg. 25, 1388 Zhangdong Road, Pudong, Shanghai, P. R. China

Booth 7 CAN SUPERCONDUCTORS

Ringhofferova 66, 251 01 Kamenice, CZECH REPUBLIC.

www.can-superconductors.com

Csuperconductors

High Temperature Superconductors for Practical Applications

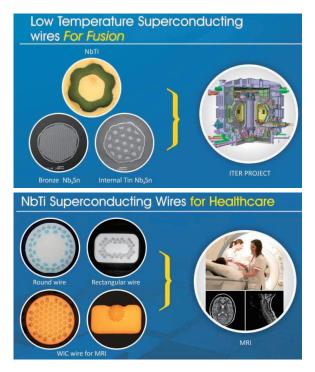
European supplier of HTS materials and products since 1997.

- YBCO single and multi-domain melt textured bulk parts for applications using the effect of magnetic levitation
- REBCO powders
- REBCO targets
- Bi-2223 current leads
- Bi-2223 magnetic shields
- Superconductivity demonstration kits.

Exhibitors

Booth 8 Western Superconducting Technologies Co., Ltd

No.12, Mingguang Road, 710018 Xi'an, Shaanxi, China. TEL: 0086-29-89616812, FAX: 0086-29-89616821 Email: wires@c-west.com


www.c-wst.com

Western Superconducting Technologies Co.,Ltd.

Western Superconducting Technologies Co., Ltd.(WST), founded in 2003, is headquartered in Xi'an, Shaanxi, the PRC. WST is leading provider of high quality superconducting matericals and titanium alloys for superconducting magnets and aviation industry in China, and continues to contribute worldwide socitey by supplying high quality products.

WST has already built an internationally advanced level production line of superconducting wires with annual production capacity of 350 ton superconducting wire and 400 ton WIC superconducting conductor.

Booth 9 TOSHIMA Manufacturing. Co.,Ltd

1414 Shimonomoto, Higashimatsuyama, Saitama 355-0036, Japan. http://www.material-sys.com/global/

Creating Impressive Technology

We will display a great and variety of PLD and Sputtering target materials for HTS.

Booth 10 Quantum Design Japan, Inc.

1-11-16 Takamatsu, Toshima-ku, Tokyo 171-0742, Japan.

https://www.qd-japan.com/

[Quantum Design, Inc.] Magnetic Property Measurement System / Physical Property Measurement System / Laboratory SQUIDs / IR Image Furnace

[Montana Instruments Corporation] Ultra Low Vibration Optical Cryostat

[RHK Technology, Inc.] Cryogen-free LT STM&AFM / AFM&STM Control Systems

[Durham Magneto Optics Ltd] Magnetooptical magnetometer and Kerr microscope / Directwrite photolithography

Scientific program

Plenary lectures

Giovanni Grasso (Columbus Superconductors) Timothy Haugan (Air Force Research Laboratory) Tomoo Mimura (TEPCO Holdings) Donald Pooke (HTS-110) Kosmas Prassides (Tohoku Univ.) Horst Rogalla (NIST/Univ. of Boulder)

Invited speakers (PC)

Guang-Han Cao (Zhejiang Univ.) Leonardo Civale (Los Alamos National Laboratory) Riccardo Comin (MIT) Donglai Feng (Fudan Univ.) Swee Kuan Goh (The Chinese Univ. of Hong Kong) Tetsuo Hanaguri (RIKEN) Toshiva Ideue (The Univ. of Tokvo) Shigeru Kasahara (Kyoto Univ.) Kazutaka Kudo (Okayama Univ.) Tatsuma Matsuda (Tokyo Metropolitan Univ.) Yoshihiko Okamoto (Nagoya Univ.) Shiro Sakai (RIKEN) Toshiro Sakakibara (The Univ. of Tokyo) Setsuko Tajima (Osaka Univ.) Jian Wang (Beijing Univ.) Ulrich Welp (Argonne National Laboratory) Youichi Yanase (Kyoto Univ.)

Invited speakers (WB)

David Cardwell (Univ. of Cambridge) Toru Fukushima (SuperPower) Eric Hellstrom (Florida State Univ.) Ruben Hühne (IFW Dresden) Yasuhiro Iijima (Fujikura Ltd.) Atsushi Ishihara (Railway Technical Research Inst.) Teruo Izumi (AIST) Takanobu Kiss (Kvushu Univ.) Motomune Kodama (Hitachi) Hiroaki Kumakura (National Inst. for Materials Science) Yanwei Ma (Chinese Academy of Sciences) Goran Majkic (Univ. of Houston) Muralidhar Miryala (Shibaura Inst. of Technology) Masashi Miura (Seikei Univ.) Seung-Hyun Moon (SuNAM) Mitsuru Morita (Nippon Steel & Sumitomo Metal) Shin-ichi Mukoyama (Furukawa Electric Co) Kotaro Ohki (Sumitomo Electric Ind.) Tetsuo Oka (Niigata Univ.)

Tomoyuki Okada (Sumitomo Electric Ind.) Teresa Puig (Institut Ciencia de Materials de Barcelona) Sergey Samoilenkov (SuperOx) Ken-ichi Sato (JST) Kohki Takahashi (Tohoku Univ.) Michael Tomsic (Hyper Tech) Danko van der Laan (Advanced Conductor Technologies) Yutaka Yoshida (Nagoya Univ.) Yue Zhao (Shanghai Jiao Tong Univ. & Shanghai Superocond. Tech.)

Invited speakers (ED)

Boris Chesca (Loughborough Univ.) Akira Fujimaki (Nagoya Univ.) Francesco Giazotto (Istituto Nanoscienze-CNR & Scuola Normale Superiore) Dorri Halbertal (Weizmann Inst. of Science) Peter Hopkins (NIST) Risto Ilmoniemi (Aalto Univ.) Mark W. Johnson (D-Wave) Hanpei Koike (AIST) Daisuke Miyagi (Tohoku Univ.) Shigetoshi Ohshima (yamagata Univ.) Yutaka Tabuchi (RCAST, The Univ. of Tokyo) Naoki Takeuchi (Yokohama National Univ.) Hirotaka Terai (National Inst. of Information & Communications Technology) Jaw-Shen Tsai (Tokyo Univ. of Science / RIKEN) Joel Ullom (NIST) Dag Winkler (Charmers Univ. of Technology) Taro Yamashita (National Inst. of Information & Communications Technology) Fumiki Yoshihara (National Inst. of Information & Communications Technology) Lixing You (SIMIT, Chinese Academy of Sciences)

Invited speakers (AP)

Naoyuki Amemiya (Kyoto Univ.) Tabea Arndt (Siemens) Fedor Gömöry (Slovak Academy of Sciences) Yukikazu Iwasa (MIT Francis Bitter Magnet Laboratory) Mitsuru Izumi (Tokyo Univ. of Marine Science & Technology) Zhenan Jiang (Victoria Univ. of Wellington) Shoji Kamiya (Kawasaki Heavy Industries) Tasuku Kitamura (SWCC Showa Cable Systems) Joseph Minervini (MIT) Yasuyuki Miyoshi (JASTEC)

Scientific program

Jin-Bae Na (LS Cable) Ken Nagashima (Railway Technical Research Inst.) Naoko Nakamura (Mayekawa Mfg.) Taketsune Nakamura (Kyoto Univ.) Tanzo Nitta (The Univ. of Tokyo (emeritus professor)) So Noguchi (Hokkaido Univ.) Vladimir Penkin (Moscow Aviation Institute) Lionel Quettier (CEA Saclay) Bruce Strauss (Department of Energy, USA) Pascal Tixador (Grenoble Inst. of Technology) Frank Werfel (Adelwitz Technologiezentrum GmbH) Yoshinori Yanagisawa (RIKEN)

Invited speakers (Late News)

Amit Goyal (The State Univ. of New York-Buffalo) Jacques G. Noudem (Univ. of Caen)

ISS2017 Program

			9:0	0		30		10	:00	3	0		11:00)	30		12:	00	3	0		13	3:00		30		1	4:00		30		1	5:00		30		16	:00	3	30		17	:00		30		18:	:00	3	30		1	9:00		30			20:00		30		
Date	Room					Π		Π		Ш			Π	Π			П	П				П	П	Ш							Ш				П						Ц		Ш				П						П					Ш	П	Ш	1	Room
Dec.13, 2017	Hall					-	ant - I			-1-	PL-3	3				Ш	ЦI	11	Ц										[]									$\ $		Цļ	Ш	Ш					Щ															Hall
Oral Session	RoomA1	\square				ке	gist	rati	on	П				П	Π.	Lur	ch T	ime				PC1	L: 3	0 ye	ears	;		П	Π	Р	C1: V	orte	x ph	nysics		Ш	Т		Π		In		nati disci			inel			Π	П	Π		Т		_						1	RoomA1
	RoomA2					Π		Π						Π			П	Π	Π	w	/B1:	: Co	mm	nerc	ial H	ITS 1	wire	s		١	NB2:	Co	mm	ercia	al H	TS w	vires	2	\square		"				utu	re"			\square				T		В	an	qu	iet			1	RoomA2
	RoomA3			Π		Π		Π		Π				Π			П	Π	Π	AP1	1: Sı	upe	rcoi	ndu	ctin	g m	agno	ets			AP1	: SC	ma	agne	ts			Ш						K	Π		Π						T								1	RoomA3
	RoomC					Ħ												\uparrow	П		Π		ED	1: S	QU	ID		T		-	E	D2	: De	etec	tor	• • •																	Ν								1	RoomC
Exhibits Open	RoomB3					Ħ		11									Ħ	\dagger	Ħ			Π	Π	Π	Т	Π	Π					П	Π	Ш			Ex	hib	oitio	on										Ħ			iet 1 for I	· ·					╁			RoomB3
Poster Session	RoomB1+					Ħ				Ħ			Ħ	$^{+}$		H	Ħ	$^{++}$	Ħ			╁		Ħ		†							PI	ut up	ро	ster		D	oste	ar se		ion:		.↓↓ D1_	PCP	<u> </u>		e Ve	╁	Ħ	Ħ		ann			- H	\parallel		╈			RoomB1+ B2
	B2 RoomD1+							╂									H	\dagger	╂			╈	╁╂										л	ut up	ш	ш	-								APP	· ·	omor		╁┼										╁┼		Ī	RoomD1+
	D2 FoyerA	╏╎┼╴				Ħ		╈		Ħ				+			H		Reg	ist	rati	ion	11					Coff	fee B	Brea	ak	T	TT	Πİ	ŤĒ	Ш	Т		Π	П	Π	Π	Ш	Π	Ш	Π	П		╈	H	┢┝		╈	+		\mathbb{H}			╈	H		D2 FoyerA
	FoyerD			\parallel			\mathbb{H}	\dagger		$^{++}$				++				\square	Ш	П	\square	Π	Π					Coff	fee B	Brea	ak							Coffe	e Br	eak										H	H	\mathbb{H}	\dagger	\parallel	╟				\dagger	$\left \right $		FoyerD
	RoomE			\square		\square		\dagger		\parallel								L	our	ige			Ħ										Ħ		\parallel		T												\ddagger				\dagger	\parallel					\dagger	$\parallel \parallel$		RoomE
Doc 14, 2017	Hall				PL-4			$\frac{1}{1}$		<u></u>	~	P2: 3	0.1	are				Π	Π	Π															Π		Π				Π	Π							$\frac{1}{11}$		\square		$\frac{1}{11}$	Π	П			Ш	$\frac{1}{11}$			Holl
Dec.14, 2017		╞┼╴╒	Regi		tion					• •		• • •	• •				•	11	Ш	Ш	Ш	Ц		PL-5		+	\square	Ш	Ш					Ш	Ш	Ш		\square	11	Ш	Ш	Ш		11	Ш	Ш	Щ	Ш	11	\parallel	\square		++	\parallel	\parallel	\square	\parallel	\square	++	\square	\rightarrow	
Oral Session	RoomA1	╟╟	+	Н	Ш			╁┢				2: Irc	+++				••		nch			-	\parallel			\parallel		PC3	3: Iro	on-	base			: No			_				PC4	• •	• • • •	•••	• • •	rials	• • •			Ш							+	$\left \right \right $	+		++	RoomA1
	RoomA2			\parallel			Щ	╢		\parallel	\ 	NB3:	Nb3	Sn, N	1gB2,	Fe-			nesti			1	\parallel	$\parallel \mid$	\parallel						WB	84-1	WB	5: 3	0 ye	ears				Ш			••••		• • • •		nen	nt o	f CC	s b	y A	PC	++		\parallel		\parallel	$\left \right \right $	\parallel	$\parallel \mid$		RoomA2
	RoomA3	$\parallel \mid \mid$	Щ	\parallel	Щ		Щ						Ш				Ц		eting ne fu				\parallel	Ш	\parallel	\parallel	Щ	AP3	: Ma	agn	et sci	ienco	e an	d tec	h.			μ,	A	P4:	Rot	atir	ng n	nac	hine	es		\square	\parallel	\square	\square		\parallel	\parallel	\parallel	Щ	\parallel	$\parallel \mid$	\parallel	Ш		RoomA3
	RoomC		\square	\parallel	Щ	Ш	Щ			1.1	ED3:	Nov	el d	evic	es			Щ	Ш		Щ	1		Ш			Ш		ED4	4: C	luant	um i	info	rmati	ion a	and 	++				ED)5: E	Digi	tal			Ш	Щ					\parallel	\parallel	\parallel	$\parallel \mid$	\parallel	$\parallel \mid$	\parallel	$\parallel \mid$		RoomC
Exhibits Open	RoomB3	\square		Щ	Ш	Ш	Ш					Ш					Ш							Ш				Exh	ibi	itic	on					Ш				Щ					Ш		Ш			Щ	Щ		\parallel	\parallel		Щ		\prod	\parallel	Ш		RoomB3
	FoyerA	\square			$\parallel \mid$		Со	ffee	Brea	k		,,	Re	gistr	atio	n		\square				Щ						Ш	Щ				\parallel			Co	offee	Brea	k					\parallel				$\parallel \mid$	\parallel	Щ	Щ		\parallel	\parallel	\parallel	$\parallel \mid$			\parallel	$\parallel \mid$		FoyerA
	FoyerD	$\parallel \mid \mid$	\square	\parallel	Ш		Co	ffee	Brea	k					Щ											C	offee	Brea	ak							Co	offee	Brea	k									Щ	\parallel	Щ	Щ		\parallel	\parallel	\parallel	Щ	\parallel	\square	\parallel	\square		FoyerD
Lounge	RoomE																		Lοι	Ing	e																																								1	RoomE
Dec.15, 2017	Hall			ļ	PL-6			Π	Π			\prod	Π	Π		Π	Π					Π	Π	\prod	Π		Ш	Π					Π	П	Π	Π	Π	Π	Π	\prod		Π	Π		Π	Π	\prod		Π				Π			\square	Π	Π	Π	Π	1	Holl
Oral sessions	RoomA1	<u></u> 	₹egi	stra	tion		\mathbb{H}				PC	:5: C	upr	ate	sup	erco	ndu	cto	rs				+	H	+	+	\mathbb{H}	++	\mathbb{H}	+			╫	\mathbb{H}	++		.ate	LLL New	II.		ng		$\left \right $	++	H	++	H	\mathbb{H}	++	H	H		+	+	╟	\mathbb{H}		$\left \right $	╁	H		RoomA1
	RoomA2	┟┼┼╴	╞┼╂	+	╏╎╎╏	H	\mathbb{H}	╁┾	v	VB7		k ma	÷.	•••		П	••••	8: B	••••	П			H	111		11	H		 /B9∙	LLI Lloi	int te	-			╂╋	+	Π	Π				╢	╎╎╎	++	┼┼┤	++	┼╂┤	╟╫	╫	+	H	$\left \right $	++	\parallel	╟	++	++	╏┼┤	╫	$\left \right $	\rightarrow	RoomA2
	RoomA3	╏┤┤╴		╟	╟╫		+	╉┨	AP5	Elct	. pwr	· · .	1	••	5: Ek	111 t. pv	••••	1			+	╈	╎╷	unc	h Ti	me	┢╋									┼┼┤	╫	╞┼┼┤	╫	┼┼┤	++	╢	┼┼┤	++	┼┼┤	++	╫╢	┝┼┼	╫	H			╫	\parallel	╟	\mathbb{H}	++	╂╫┤	╫	H	++	RoomA3
	RoomC	╏╎╎╴	╫	+	╟┼	H	\mathbb{H}	╂		levic	es	F) 6	30 y		· · · ·			11	+	\mathbb{H}	╢	+	H	╫	+	\mathbb{H}	++	\mathbb{H}	+	++	╫	╫	\mathbb{H}	+	$\left \right $	╫	╟┼	++	H	+	╢	H	+	$\left \right $	++	\mathbb{H}	\mathbb{H}	++	\mathbb{H}	\mathbb{H}	\mathbb{H}	╫	+	╟	\mathbb{H}	+	H	╫	H		RoomC
Exhibits Open	RoomB3	╟┼┼	╟╟	╟	╟╫	H	\mathbb{H}		П	Π							Π	Π		Ш	╚		 hiti		11			++	\mathbb{H}				+		+		╢	╟╟	++	H	++	╢	┼┼┤	++	┼┼┤	++	╫╢	╟╫	++	H	$\left \right $	\mathbb{H}	╢	+	╟	\mathbb{H}	+	╟╢	╫	H		RoomB3
	RoomB1+	╏╎┼	┼╂	\parallel	┼┼┼	H		╢				$\left \right $	╋	╈		$\left \right $	H	+					1.1.					111	Ш				Ш	Ш	11		υ	$\left \right \right $	╢	$\left \right \right $	++	╢	$\left \right \right $	╂╂	$\left \right \right $	╫	$\left \right $	++	╢	H	$\left \right $	$\left \right $	╂	++	╟	++	++	╂╫┤	╂╂	$\left \right $		RoomB1+
Poster session	B2 RoomD1+	$\left \right \right $	\mathbb{H}	+	╟╟	H	Щ	╢	\mathbb{H}	\parallel	\square	$\parallel \mid$	╟	++	\mathbb{H}	\mathbb{H}	\mathbb{H}	++	\mathbb{H}	+	777	Put	11			Ŧ					ion: APF						emov	H	++	H	++	╢	$\left \right \right $	+	$\left \right \right $	++	$\left\{ \right\}$	\mathbb{H}	++	\mathbb{H}	\mathbb{H}	\mathbb{H}	╢	+	\parallel	\mathbb{H}	++	╟╢	╢	H		B2 RoomD1+
	D2	$\left \right \left \right $		\parallel	$\left \right \right $	H											Щ	+				Put	up	pos	ter									_J,⊑ ∏∏			×		++	$\left \right \right $	++	╢	$\left \right \right $	╢	$\left \right \right $	++	┼┼┤		++	H	$\left \right $		++	\parallel	╟		++	$\left\{ \right\}$	╢	$\left \right $		D2
	FoyerA	\mathbb{H}	\square	\mathbb{H}	\mathbb{H}	\mathbb{H}		ffee	Brea	K L			ке _į	gistr				+				╢	+			+		ee Br ee Br			++	\square	╢	++	++	H	╢	\mathbb{H}	++	H	++	╢	\mathbb{H}	++	H	++		\mathbb{H}	++	\mathbb{H}	\mathbb{H}	\square	++	+	\parallel	\mathbb{H}	+	╟╢	╢	H	++	FoyerA FoyerD
Loungo	FoyerD	╏╎┼	┼╂	\parallel	┼┼┼	H			brea	Ì							Ш	Ш				Ш	╢	$\left \right $		╢			eak				╢				╫	$\left \right \right $	╫	$\left \right \right $	++	╢	$\left \right \right $	╂╂	$\left \right \right $	╢	$\left\{ \right\}$	++	╫	H	$\left \right $	$\left \right $	╂	++	╟	++	++	╂╫┤	╂╂	$\left \right $		RoomE
Lounge	RoomE 8:	:00	9:0		Ш	30	Ш	10	:00	3	0		11:00		30		12:		Lou	_		1	3:00		30			4:00		30		1	5:00		30		16	:00	<u> </u>	30		17	:00	<u> </u>	30		18:	:00	<u> </u>	30	Ш		9:00	Ш	30	Ш		20:00		30		NUUTIE

ISS2017 abstracts can be accessed from the "Program" page of the ISS2017 web site (http://iss2017.tokyo/program.html). To access the abstract files, use the following ID and password. ID: iss2017, Password: 30thanniversary

Panel discussion and Domestic lunch meeting

Dec. 13 (Wed.) International panel discussion

Room C, 17:00-18:15

ISS in the future

Moderator: Naoyuki Amemiya (Kyoto University)

Panelists:

Horst Rogalla (University of Colorado at Boulder) Eric Hellstrom (Florida State University) Pascal Tixador (Grenoble Institute of Technology) Hiroyuki Osaki (University of Tokyo) Setsuko Tajima (Osaka University) Toshihiko Kanayama (AIST)

This year, the ISS has the 30th anniversary. With all our great efforts, the HTS are still not able to contribute enough to our society. In view of this situation, we plan a panel discussion in the ISS2017, which will be a good chance to have honest opinions from stakeholders of this community. We would like to discuss under a title of "ISS in the future".

Dec. 13 (Wed.) 30th Anniversary celebration & Banquet

Room A3, 18:30-19:10

Get together for ISS 30th anniversary

We have a celebration for the 30th anniversary of ISS. Congratulatory addresses from government official, university professor, company executive, etc. will be delivered. Every participant can join. **Free drinks** are served.

Room A1+A2, 19:10-20:30

Banquet

Registration is needed to participate (¥5,000/person).

Dec. 14 (Thu.) Domestic lunch meeting

Room A3, 12:05-12:55

ISS in the future (in Japanese)

12 月 13 日のパネル討論を受けて、国内の超電導技術関係者に限定 し、「今後の ISS 運営に関する意見交換」を、ランチミーティング形 式で開催いたします。今後の ISS 開催頻度と開催場所、他の関連学会 との関係、パブリケーションのありかた等、ISS の運営に関して忌憚の ないご意見をいただければと思います。

プログラム委員、アドバイザー委員、座長、招待講演者の皆様のほか、 国内参加者の皆様の積極的なご参加をお願いいたします。

(軽食を用意しますが、数に限りがあります。なくなった場合はご容赦下さい。)

Dec. 13 (Wed.) Plenary Lecture | lino Hall

9:25-9:30

Opening address Toshihiko Kanayama

Fellow, AIST

Chairperson: Hiroshi Eisaki (AIST)

PL1-INV 9:30-10:10 30 years of superconductivity in molecular solids

*Kosmas Prassides¹

Tohoku University, Japan¹

Chairperson: Hiroaki Kumakura (NIMS)

PL2-INV 10:10-10:50 Status Of Long Length MgB₂ Wire Manufacturing After a Decade Of Industrial Production

*Giovanni Grasso¹ Columbus Superconductors srl, Genova, ITALY¹

Chairperson: Mitsuho Furuse (AIST)

PL3-INV 10:50-11:30

The near future power grid in TEPCO and superconducting applied technology

*Tomoo Mimura¹

Tokyo Electric Power Company Holdings, Japan¹

Lunch Break 11:30-12:30

Dec. 14 (Thu.) Plenary Lecture Hall

Chairperson: Yoshiyuki Yoshida (AIST)

PL4-INV 9:00–9:40

R&D of applied superconductivity by a small business: experiences and future perspective

*Donald M Pooke¹, Mike Fee¹, Taotao Huang¹, Vadim Chamritski¹, Matt Christian¹

 $HTS-110^{1}$

AP special session and Lunch Break 10:00-13:00

Chairperson: Takanobu Kiss (Kyushu University)

PL5-INV 13:00–13:40

Recent Progress in the Development of Superconducting Wires in the U.S.A.

*Timothy J. Haugan¹

U.S. Air Force Research Laboratory, Aerospace Systems Directorate, USA^1

WB special session at the conference Room A2 14:00-16:30

Dec. 15 (Fri.) Plenary Lecture | Hall

Chairperson: Masataka Ohkubo (AIST)

PL6-INV 9:00-9:40 30 Years of History and Future Perspectives of Superconducting Electronics

*Horst Rogalla^{1,2}

University of Colorado, ECEE Department, Boulder, USA¹ NIST Boulder, Superconductive Electronics Group, USA²

ED special session at the conference Room C 10:00-12:30

Dec. 13 (Wed.) Physics and Chemistry Room A1

30-year history of ISS / Vortex physics

Chairpersons: Atsutaka Maeda (The University of Tokyo) and Ulrich Welp (Argonne National Laboratory)

PC1-1-INV 12:30–13:00

High-Tc Research Over Thirty Years: Beyond The Common Knowledge of Superconductivity

*Setsuko Tajima¹

Graduate School of Science, Osaka University¹

PC1-2-INV 13:00–13:30

Scanning Tunneling Microscopy as a Tool for Superconductivity Research

*Tetsuo Hanaguri¹

RIKEN Center for Emergent Matter Science, Japan¹

PC1-3-INV 13:30–14:00

Angle-Resolved Heat Capacity of Unconventional Superconductors

*Toshiro Sakakibara¹

Institute for Solid State Physics, University of Tokyo¹

Coffee break 14:00–14:30

PC1-4-INV 14:30–15:00

What is the lowest possible vortex creep in superconductors, and how can we achieve it?

*Leonardo Civale¹

Los Alamos National Laboratory, USA¹

PC1-5 15:00–15:15

Detecting changes in the vortex configuration associated with dynamic ordering and disordering

*Mihaly Dobroka¹, Koichiro Ienaga¹, Shin'ichi Kaneko¹, Satoshi Okuma¹

Tokyo Institute of Technology¹

PC1-6 15:15–15:30

Molecular Dynamics Simulations on Melting Transition of Vortex Matter in Nano-Sized Superconductors

*Masaru Kato¹, Osamu Sato²

Department of Mathematical Sciences, Osaka Prefecture University, Japan¹ Osaka Prefecture University College of Technology²

Dec. 13 (Wed.) Wires and Bulk Room A2

Recent development of commercial HTS wires

Chairpersons: Danko van der Laan (Advanced Conductor Technologies LLC) and Teruo Izumi (AIST)

WB1-1-INV 12:30–12:55

Development of BMO-doped REBCO Coated Conductor by Hot-Wall PLD Process on IBAD template

*Yasuhiro Iijima¹

Fujikura Ltd.1

WB1-2-INV 12:55–13:20

Recent progress on the development of RE-123 CCs in SuNAM

*Seung Hyun Moon¹

SuNAM Co. Ltd., Anseong-Si, Gyeonggi-do, Korea¹

WB1-3-INV 13:20–13:45

Development and production of advanced 2G HTS wires at SuperOx

*Sergey Samoilenkov¹, Alexander Molodyk², Sergey Lee³, Valery Petrykin³

SuperOx, Nauchnyi proezd, Moscow, Russia¹ S-Innovations, Presnenskaya embankment, Moscow, Russia² SuperOx Japan, Chuo-ku Sagamihara, Kanagawa, Japan³

WB1-4-INV 13:45–14:10

Production and Development of ReBCO (2G-HTS) Conductors

*Toru Fukushima¹, Drew W. Hazelton¹, Yifei Zhang¹, Aarthi Sundaram¹, Satoshi Yamano¹, Hiroshi Kuraseko¹, Hisaki Sakamoto², Kengo Nakao², Ryusuke Nakasaki², Masayasu Kasahara²

SuperPower Inc.¹ Furukawa Electric Co., Ltd.²

Coffee break 14:10–14:30

Recent development of commercial HTS wires 2

Chairpersons: S. H. Moon (SuNAM) and Yasuhiro Iijima (Fujikura)

WB2-1 14:30–14:45

Structural, mechanical and electrical characterization of long length *REBCO* tapes for FCL applications

*Sandra Kauffmann-Weiss¹, Mayraluna Lao¹, Simon Otten¹, Veit Große², Markus Bauer², Bernhard Holzapfel¹, Jens Hänisch¹

Institute for Technical Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany¹

THEVA Dünnschichttechnik GmbH, Ismaning, Germany²

WB2-2-INV 14:45–15:10

Recent Progress on CORC® Cables and Wires

*Danko van der Laan¹, Jeremy Weiss¹, Ulf Trociewitz², Ernesto Bosque², David Larbalestier², Xiaorong Wang³, Chul Kim⁵, Sastry Pamidi⁵, Tim Mulder⁶, Herman ten Kate⁶

Advanced Conductor Technologies LLC, Boulder, U.S.A and the Department of Physics, University of Colorado, Boulder, U.S.A¹

National High Magnetic Field Laboratory, Florida State University, Tallahassee, $\rm U.S.A^2$

Lawrence Berkeley National Laboratory, Berkeley, U.S.A.³

Center for Advanced Power Systems, Florida State University, Tallahassee, U.S.A. 5

CERN, Geneva, Switzerland and the University of Twente, Enschede, the Netherlands $^{\rm 6}$

WB2-3 15:10–15:25

Numerical modelling of dynamic resistance in hightemperature superconducting coated-conductor wires

*Mark D Ainslie¹, Chris W Bumby², Zhenan Jiang², Ryuki Toyomoto³, Naoyuki Amemiya³

Bulk Superconductivity Group, Department of Engineering, University of Cambridge¹

Robinson Research Institute, Victoria University of Wellington² Department of Electrical Engineering, Graduate School of Engineering, Kyoto University³

WB2-4-INV 15:25–15:50

Progress and Status of 2G-HTS Wire Development in China

*Yue Zhao
1.², Xiang Wu¹, Jiamin Zhu¹, Zhiwei Zhang
1.², Wei Wu¹.² , Zhiyong Hong¹.², Yiji
e Li¹², Zhijian Jin², Yutaka Yamada²

Shanghai Superconductor Technology Co. Ltd., Shanghai, People's Republic of China¹

Department of Electrical Engineering, Shanghai JiaoTong University, Shanghai, People's Republic of China²

WB2-5-INV 15:50–16:15

Recent progress on the development of Bi2223 in SEI

*Tomoyuki Okada¹, Shin-ichi Kobayashi, Goro Osabe¹, Masashi Kikuchi¹, Satoru Yamade¹, Takayoshi Nakashima¹, Soichiro Takeda¹, Kenta Niki¹, Kazuhiko Hayashi¹, Takeshi Kato¹

Sumitomo Electric Industries, Ltd., Japan¹

Dec. 13 (Wed.) Electronic Devices

Room C

SQUID

Chairpersons: Risto Ilmoniemi (Aalto University) and Tsunehiro Hato (SUSTERA)

ED1-1-INV 12:50–13:15

Multichannel on-scalp MEG based on high-Tc SQUID magnetometers

*Dag Winkler¹, Justin F Schneiderman², Alexei Kalabukhov¹, Maxim Chukharkin¹, Minshu Xie¹, Silvia Ruffieux¹, Christoph Pfeiffer¹

Microtechnology and Nanoscience–MC2, Chalmers University of Technology, Sweden¹

MedTech West and the Institute of Neuroscience and Physiology, Sahlgrenska Academy & the University of Gothenburg, Sweden²

ED1-2-INV 13:15–13:40

Superconducting Devices Based on Coherent Operation of Josephson Junction Arrays above 77K

*Boris Chesca¹

Physics Department, Loughborough University, UK1

ED1-3 13:40–14:00

Magnetometer based on transfer and modulation of magnetic flux using HTS coils

*Keiji Enpuku¹, Masaaki Matsuo¹, Yujiro Yoshida¹, Shigeya Yamashita¹, Teruyoshi Sasayama¹, Takashi Yoshida¹

Kyushu University¹

Coffee break 14:00–14:30

Detectors

Chairpersons: Joel Ullom (NIST) and Masashi Ohno (The University of Tokyo)

ED2-1-INV 14:30–14:55

Micro-fiber coupled superconducting nanowire singlephoton detector for near infrared wavelengths

*Lixing You^{1,2}, Junjie Wu^{1,2}, Yingxin Xu³, Xintong Hou^{1,2}, Wei Fang³, Hao Li^{1,2}, Weijun Zhang^{1,2}, Limin Tong³, Zhen Wang^{1,2}

State Key Laboratory of Functional Materials for Informatics, SIMIT, Chinese Academy of Sciences (CAS), Shanghai, China¹ Center for ExcelleNce in Superconducting Electronics (CENSE), Chinese Academy of Sciences (CAS), Shanghai, China² State Key Laboratory of Modern Optical Instrumentation, Dep. of Optical Engineering, Zhejiang University, Hangzhou, China³

ED2-2 14:55–15:15

Microscope imaging with an optical transition edge sensor sensitive to a single photon

*Kaori Hattori¹, Ryo Kobayashi², Kazuki Niwa¹, Takayuki Numata¹, Shuichiro Inoue², Daiji Fukuda¹

AIST, Japan¹ Institute of Quantum Science, Nihon University, Japan²

ED2-3 15:15–15:35

Microwave SQUID Multiplexing for Ti/Au bilayer TES X-ray microcalorimeter

*Yuki Nakashima^{1,2}, Fuminori Hirayama², Satoshi Kohjiro², Hirotake Yamamori², Shuichi Nagasawa², Akira Sato², Tasuku Hayashi¹, Haruka Muramatsu¹, Noriko. Y Yamasaki¹, Kazuhisa Mitsuda¹

ISAS/JAXA, Japan¹ AIST, Japan²

ED2-4

15:35 - 15:55

Evaluation of YBa₂Cu₃O₇₋₆ based microwave kinetic inductance detector array with rewound spiral resonators

*Keigo Sato¹, Seiichiro Ariyoshi¹, Kensuke Nakajima², Saburo Tanaka¹

Toyohashi University of Technology, Japan¹ Yamagata University, Japan²

Dec. 13 (Wed.) Large Scale System Applications Room A3

Superconducting magnet

Chairpersons: Yukikazu Iwasa (MIT) and Bruce Strauss (DOE, USA)

AP1-1-INV 12:30–12:55 The Iseult Whole Body 11.7 T MRI System

*Lionel QUETTIER¹

CEA Saclay¹

AP1-2-INV 12:55–13:20

Design and technical development of a high-resolution 1.3 GHz (30.5 T) NMR magnet in a persistent current (PC) mode

*Yoshinori Yanagisawa¹, Kazuyoshi Saito², Mamoru Hamada², Hiroshi Ueda³, Gen Nishijima⁴, Hitoshi Kitaguchi⁴, Shinji Matsumoto⁴, Takashi Noguchi⁴, Yu Suetomi⁵, Takeshi Ueno⁶, Kazama Yamagishi⁶, Shunji Takahashi⁶, Tomoaki Takao⁶, Takashi Yamaguchi⁷, Kotaro Ohki⁷, Tatsuoki Nagaishi⁷, Renzhong Piao¹, Masato Takahashi¹, Hideaki Maeda¹

RIKEN, Japan¹ Japan Superconductor Technology, Japan² Okayama University, Japan³ National Institute for Materials Science, Japan⁴ Chiba University, Japan⁵ Sophia University, Japan⁶ Sumitomo Electric, Japan⁷

AP1-3-INV 13:20–13:45

REBCO coated conductor layer winding for persistent current operation

*Yasuyuki Miyoshi¹, Kazuyoshi Saito¹, Mamoru Hamada¹, Shinji Matsumoto², Gen Nishijima², Ryusuke Nakasaki³, Akinobu Nakai³, Hisaki Sakamoto³, Shinichi Mukoyama³

Japan Superconductor Technology, Inc., Kobe, Japan¹ National Institute for Materials Science, Tsukuba, Japan² Furukawa Electric Co., Ltd., Ichihara, Chiba, Japan³

AP1-4-INV 13:45–14:10

Highly Compact, High Magnetic Field, High Performance Fusion Reactors Using REBCO Conductor Technology

*Josep V. Minervini¹, Robert Mumgaard¹, Martin Greenwald¹, Dennis Whyte¹, Brandon Sorbom¹, Daniel Brunner¹

Massachusetts Institute of Technology, Cambridge, USA1

Coffee break 14:10-14:30

AP1-5

14:30-14:50

High Field Magnets for Future Circular Colliders Presented by S. Izquierdo Bermudez on behalf of HL-LHC project and the FCC design study

*Susana Izquierdo Bermudez¹

CERN¹

AP1-6-INV 14:50–15:15

Progress of Fundamental Technology R&D toward Cryocooler-Cooled Accelerator Magnets

*Naoyuki Amemiya¹, Yusuke Sogabe¹, Shigeki Takayama², Yusuke Ishii², Toru Ogitsu³, Yoshiyuki Iwata⁴, Koji Noda⁴, Masahiro Yoshimoto⁵

Kyoto University¹ Toshiba Corporation² High Energy Accelerator Research Organization³ National Institute of Radiological Sciences⁴ Japan Atomic Energy Agency⁵

AP1-7-INV 15:15-15:40 Technology priorities in large-scale HTS bulk devices

*Frank N Werfel¹, Uta Floegel-Delor¹, Rolf Rothfeld¹, Thomas Riedel¹, Peter Schirrmeister¹, Rene Koenig¹, Viktor Kantarbar¹

Adelwitz Technologiezentrum GmbH (ATZ)¹

Dec. 14 (Thu.) Physics and Chemistry Room A1

Iron-based superconductors

Chairpersons: Takasada Shibauchi (The University of Tokyo) and Masamichi Nakajima (Osaka University)

PC2-1-INV 10:00-10:30

New iron-based superconductors with separate double FeAs Layers

*Guang-Han Cao¹, Zhi-Cheng Wang¹, Si-Qi Wu¹, Chao-Yang He¹

Department of Physics, Zhejiang University, Hangzhou, China¹

PC2-2-INV 10:30–11:00

X-ray fluorescence holography of Ca1-_rPr_Fe2As2

*Kazutaka Kudo¹, Satoshi Ioka¹, Naohisa Happo², Hiromi Ota³, Yoshihiro Ebisu⁴, Koji Kimura⁵, Takuma Hada², Takumi Kimura¹, Hiroo Tajiri⁶, Shinya Hosokawa⁷, Kouichi Hayashi⁵, Minoru Nohara¹

Research Institute for Interdisciplinary Science, Okayama University, Japan 1

Graduate School of Information Sciences, Hiroshima City $University, Japan^2 \\$

Advanced Science Research Center, Okayama University, Japan³ Graduate School of Science and Technology, Hiroshima Instituite of Technology, Japan⁴

Department of Physical Science and Engineering, Nagoya Institute of Technology, Japan 5

Japan Synchrotron Radiation Research Institute, Japan⁶ Department of Physics, Kumamoto University, Japan⁷

PC2-3 11:00–11:15

An X-ray Fluorescence Holographic Study on a Fe-based High-Temperature Superconductor $FeSe_{0.4}$ Te_{0.6}

*Jens R. Stellhorn¹, S. Hosokawa¹, N. Happo², K. Kimura³, K. Hayashi³, H. Okazaki⁴, A. Yamashita⁴, Y. Takano⁴

Department of Physics, Kumamoto University, Japan¹

Graduate School of Information Sciences, Hiroshima City University, $\rm Japan^2$

Department of Physical Science and Engineering, Nagoya Institute of Technology, Japan³

MANA, National Institute for Materials Science, Japan⁴

PC2-4 11:15–11:30

Evolution of Physical Properties in FeSe Single Crystals with Different Qualities

*Tsuyoshi Tamegai¹, Jingting Chen¹, Sunseng Pyon¹, Yue Sun²

Department of Applied Physics, The University of Tokyo, Japan¹ Inst. for Solid State Physics (ISSP), The Univ. of Tokyo, Japan²

PC2-5 11:30–11:45

Electrotransport and magnetic measurements on bulk FeSe superconductors

Thomas Karwoth¹, Kouichi Furutani^{1,2}, *Michael R Koblischka^{1,2}, Xianlin Zeng¹, Alex Wiederhold¹, Miryala Muralidhar², Masato Murakami², Uwe Hartmann¹

Tokyo Institute of Technology¹

PC2-6 11:45–12:00

Epitaxial NdFeAs(O,F) Films By Molecular Beam Epitaxy: Influence Of Film Thickness And Surface Morphology On Superconducting Properties

*Sandra Kauffmann-Weiss¹, Kazumasa Iida^{2.3}, Takuya Matsumoto³, Taito Ohmura², Takafumi Hatano^{2.3}, Torben Boll^{4,5}, Marco Langer¹, Bernhard Holzapfel¹, Hiroshi Ikuta^{2.3}, Jens Hänisch¹

Inst. for Technical Physics, Karlsruhe Inst. of Technology, Germany¹ Dept. of Crystalline Materials Science, Nagoya University, Japan² Department of Materials Physics, Nagoya University, Japan³ Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany⁴

Inst. for Applied Materials, Karlsruhe Inst. of Technology, Germany⁵

Iron-based superconductors 2 / Novel materials

Chairpersons: Kazutaka Kudo (Okayama University) and Swee K. Goh (The Chinese University of Hong Kong)

PC3-1-INV 14:00–14:30

On the interfacial superconductivity of FeSe/STO

*Donglai Feng¹

Department of Physics, Fudan University, Shanghai, China¹

PC3-2 14:30–14:45

Effect of orbital ordering on charge dynamics in FeSe₁₋ _xTe_x studied by optical spectroscopy

*Masamichi Nakajima¹, Kazuya Yanase¹, Masataka Kawai², Daisuke Asami², Tomoya Ishikawa², Fuyuki Nabeshima², Yoshinori Imai³, Atsutaka Maeda², Setsuko Tajima¹

Osaka University, Japan¹ The University of Tokyo, Japan² Tohoku University, Japan³

PC3-3 14:45-15:00 High-Resolution ARPES Study of Quasiparticle Band Dispersion in Electron-Doped FeSe Thin Films

*Koshin Shigekawa¹, Kosuke Nakayama¹, Masato Kuno¹, Giao Phan¹, Katsuaki Sugawara^{2,3}, Takashi Takahashi^{1,2,3} Dept. Phys., Tohoku Univ., Sendai, Japan¹ WPI-AIMR, Tohoku University, Sendai, Japan² CSRN, Tohoku University, Sendai, Japan³

PC3-4-INV 15:00-15:30 Superconductivity in the Noncentrosymmetric Iridium Phosphide ScIrP

*Yoshihiko Okamoto^{1,2}

Department of Applied Physics, Nagoya University, Japan¹ Institute for Advanced Research, Nagoya University, Japan²

PC3-5-INV15:30-16:00Nonlinearsuperconductingtransportnoncentrosymmetric superconductors

*Toshiya Ideue¹

Quantum-Phase Electronics Center (QPEC) and Department of Applied Physics, The University of Tokyo, Japan¹

Coffee break 16:00–16:15

Novel materials 2

Chairpersons: Akira Iyo (AIST) and Yoshihiko Okamoto (Nagoya University)

PC4-1-INV 16:15–16:45

Quasilinear quantum magnetoresistance in pressureinduced nonsymmorphic superconductor CrAs

Q. Niu¹, W. C. Yu¹, K. Y. Yip¹, Z. L. Lim¹, H. Kotegawa², E. Matsuoka², H. Sugawara², H. Tou², Y. Yanase³, *Swee K. Goh¹

Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong $^{\rm 1}$

Department of Physics, Kobe University, Kobe, Japan² Department of Physics, Kyoto University, Kyoto, Japan³

PC4-2-INV 16:45–17:15

High Temperature Superconductivity and Quantum Phase Transitions in crytalline 2D Superconductors

*Jian Wang^{1,2} International Center for Quantum Materials, School of Physics, Peking University, China¹ Colleborative Importation Contar of Quantum Matter Boijing

Collaborative Innovation Center of Quantum Matter, Beijing, China^2

PC4-3-INV 17:15–17:45

Structural Phase Diagram and Anomalous Magnetic Properties in a Superconductor of $LnO_{1-x}F_xBiS_2$ (Ln: rare earth elements)

*Tatsuma D. Matsuda¹, Joe Kajitani¹, Masaaki Mita¹, Ryoko Sagayama², Hajime Sagayama², Reiji Kumai², Youichi Murakami², Keisuke Matsumura³, Ryuji Higashinaka¹, Yuji Aoki¹

Department of Physics, Tokyo Metropolitan University, Japan¹ Institute of Materials Structure Science, High Energy Accelerator Research Organization, Japan²

Department of Advanced Materials Science, the University of Tokyo, $Japan^3\,$

PC4-4 17:45–18:00

The superconducting anisotropy of $LaO_{0.5}F_{0.5}BiS_2\,single\,crystal$

*Yuet Ching Chan¹, King Yau Yip¹, Qun Niu¹, Yiu Wing Cheung¹, Yuk Tai Chan¹, Kwing To Lai¹, Joe Kajitani², Ryuji Higashinaka², Tatsuma D. Matsuda², Yuji Aoki², Swee Kuan Goh¹

Dept. of Physics, The Chinese Univ. of Hong Kong, Hong Kong¹ Department of Physics, Tokyo Metropolitan University, Japan²

PC4-5 18:00–18:15

Nearly isotropic superconductivity in layered Weyl semimetal WTe₂ at 98.5 kbar

*Yuk Tai Chan¹, P. L. Alireza², K. Y. Yip¹, Q. Niu¹, K. T. Lai¹, S. K. Goh¹

Dept. of Physics, The Chinese Univ. of Hong Kong, Hong Kong^1 Cavendish Laboratory, University of Cambridge, United Kingdom²

PC4-6 18:15–18:30

Strong Pauli Paramagnetic Effects in the Quasi-Two-Dimensional Superconductor Restacked TaS₂ Nanosheets

Yonghui Ma¹, Jie Pan², *Gang Mu¹, Fuqiang Huang², Xiaoming Xie¹

Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China¹

Shanghai Inst. of Ceramics, Chinese Academy of Sciences, China²

Dec. 14 (Thu.) Wires and Bulk Room A2

Nb₃Sn, MgB₂ and Iron-based superconducting wires

Chairpersons: Giovanni Grasso (Columbus Superconductors) and Hiroaki Kumakura (NIMS)

WB3-1-INV 10:30–10:55

Recent Progress on the Development of MgB₂ superconductors at Hyper Tech

*Michael Tomsic¹, Matthew Rindfleisch¹, David Doll¹, Michael Sumption², Michael Martens³

Hyper Tech Research Inc.¹ Ohio State University² Case Western Reserve University³

WB3-2-INV 10:55–11:20

Recent progress on the development of MgB_2 wires in Hitachi

*Motomune Kodama¹, Hiroshi Kotaki¹, Takaaki Suzuki¹, Hideki Tanaka¹, Ryuya Ando¹, Takeshi Nakayama¹

Research & Development Group, Hitachi Ltd1

WB3-3-INV 11:20–11:45

Development of iron-based superconducting materials for high-field applications

*Yanwei Ma¹

Institute of Electrical Engineering, Chinese Academy of $\operatorname{Sciences}^1$

WB3-4 11:45–12:00

New Internal-Sn Processed Nb₃Sn Conductors with Brass Matrix

*Kyoji Tachikawa^{1,2}, Nobuya Banno², Yasuo Miyamoto¹

Tokai University¹ National Institute for Materials Science²

30-year history and future prospects of superconducting wire development

Chairpersons: Eric Hellstrom (Florida State University) and Kenichi Sato (JST)

WB4-1-INV 14:00–14:30

History and Future Prospects of the Development of (RE)BCO Bulk Superconductors

*David A. Cardwell¹

Department of Engineering, University of Cambridge, UK1

WB4-2-INV 14:30–15:00

History and Future Prospects of Coated Conductor Development-As a commemoration of the 30th anniversary of ISS-

*Teruo IZUMI¹

National Institute of Advanced Industrial Science and Technology $(\mbox{AIST})^1$

30-year history and future prospects of superconducting wire development 2

Chairpersons: Yanwei Ma (IEE, Chinese Academy of Sciences) and Yutaka Yamada (Shanghai Superconductor Technology)

WB5-1-INV 15:00–15:30

10 years beyond the 30th ISS: History and future prospects of Bi-2223 wires development

*Kenichi Sato¹

Japan Science and Technology Agency¹

WB5-2-INV 15:30–16:00

10 Years Beyond the 30th ISS: History and Future Prospects of Bi-2212 Conductors

*Eric E. Hellstrom¹, Ernesto S. Bosque¹, Griffin Bradford¹, Michael Brown¹, Daniel S. Davis¹, Charles L. English¹, David K. Hilton¹, Imam S. Hossain¹, Jianyi Jiang¹, Fumitake Kametani¹, Youngjae Kim¹, David C. Larbalestier¹, Jun Lu¹, Evan Miller¹, George E. Miller¹, Yavuz Oz¹, Ulf P. Trociewitz¹

Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, USA¹

WB5-3-INV 16:00–16:30

History and future prospects of MgB_2 and iron based superconducting wires

*Hiroaki Kumakura¹

National Institute for Materials Science¹

Coffee break 16:30–16:45

Enhancement of in-field performance of CCs by use of APC process

Chairpersons: Timothy Haugan (Air Force Research Laboratory) and Toru Fukushima (Furukawa-SuperPower)

WB6-1-INV 16:45–17:10

Recent results on flux pinning in nanoparticle-doped $REBa_2Cu_3O_y$ Coated Conductor by TFA-MOD

*Masashi Miura¹, Michio Sato¹, Takeharu Kato², Tomohiro Kato², Ryoji Yoshida², Koichi Nakaoka³, Teruo Izumi³

Seikei University¹ Japan Fine Ceramics Center² National Inst. of Advanced Industrial Science and Technology³

WB6-2-INV 17:10–17:35

Fast PLD growth of nanostructured YBCO coated conductors with artificial pinning centers

Max Sieger¹, Patrick Pahlke¹, Jens Hänisch², Mayraluna Lao^{2,3}, Michael Eisterer³, Alexander Meledin⁴, Gustaaf Van Tendeloo⁴, Kornelius Nielsch¹, Ludwig Schultz¹, *Ruben Hühne¹

Inst. for Metallic Materials, IFW Dresden, Germany¹ Inst. for Technical Physics, Karlsruhe Inst. of Technology, Germany² Atominstitut, TU Wien, Vienna, Austria³ EMAT, University of Antwerp, Belgium⁴

WB6-3-INV 17:35-18:00

Present status of High Performance REBCO Conductors and Recent Progress of Advanced MOCVD

*Goran Majkic^{1,2,3,4}

University of Houston¹ Department of Mechanical Engineering² Texas Center for Superconductivity³ Advanced Manufacturing Institute⁴

WB6-4-INV 18:00 - 18:25

Progress in low cost chemical solution Nanocomposite YBa₂Cu₃O_{7-x} coated conductors

*Teresa Puig¹, Ziliang Li¹, Cornelia Pop¹, Natalia Chamorro^{1,2}, Bohores Villarejo¹, Flavio Pino¹, Ferran Vallés¹, Bernat Mundet¹, Laia Soler¹, J. Jareño¹, Silvia Rasi^{1,3}, J. Banchewski¹, R. Guzmán¹, J. Gázquez¹, M. Coll¹, A. Palau¹, S. Ricart¹, J. Ros², J. Farjas³, P. Roura³, X. Obradors¹

Institut de Ciència de Materials de Barcelona, Spain¹ Departament de Química, Universitat Autonoma de Barcelona, Spain²

GRMT, Department of Physics, University of Girona, Spain³

WB6-5-INV 18:25-18:50

High performance REBa₂Cu₃O_y coated conductors with designed artificial pinning center

*Yutaka Yoshida¹, Yusuke Ichino¹, Yuji Tsuchiya¹, Kaname Matsumoto², Teruo Izumi³, Ataru Ichinose⁴, Satoshi Awaji⁵

Nagoya university¹ Kyushu Inst. Tech2 AIST³ CRIERI⁴ Tohoku university⁵

WB6-6-INV 18:50-19:15

Analysis and Modeling of Current Transport Properties in Long Length Coated Conductors

*Takanobu Kiss¹, Kohei Higashikawa¹, Takumi Suzuki¹, Yuhei Nishimiya¹, Yuta Onodera¹, Masayoshi Inoue¹, Mitsunori Igarashi², Kazuomi Kakimoto², Yasuhiro Iijima²

Dept. of Electrical Engineering, Kyushu University, Japan¹ Fujikura Ltd., Sakura, Japan

Dec. 14 (Thu.) Electronic Devices **Room C**

Novel devices

Chairpersons: Peter Hopkins (NIST) and Hirotake Yamamori (AIST)

ED3-1-INV 10:00 - 10:25

Single-Flux-Quantum Circuits with Nb-doped Si Barriers

*Peter F Hopkins¹, Manuel Castellanos Beltran¹, Paul D. Dresselhaus¹, David Olaya¹, Javier Pulecio¹, Miranda Thompson², Samuel P. Benz¹

National Institute of Standards and Technology, USA¹ University of Colorado, Boulder, USA²

ED3-2-INV 10:25-10:50

Coherent caloritronics with Josephson circuits: from heat interferometers to $0-\pi$ controllable thermal Josephson junctions

*F Giazotto¹

NEST, Istituto Nanoscienze-CNR & Scuola Normale Superiore, Pisa, Italy¹

ED3-3-INV 10:50-11:15

Niobium-nitride Based Ferromagnetic Josephson Junctions for Superconducting Qubit Application

*Taro Yamashita^{1,2}

Advanced ICT Research Institute, National Institute of Information and Communications Technology, Japan¹ PRESTO, Japan Science and Technology Agency, Japan²

ED3-4-INV 11:15-11:40

Basic Study on AC loss characteristics in frequency band of a few tens of kHz in an HTS pancake-coil for Wireless **Power Transmission System**

*Daisuke Miyagi¹, Ryota Inoue¹, Makoto Tsuda¹, Hidetoshi Matsuki,1

Tohoku University, Japan¹

ED3-5 11:40-12:00 Generation of Circularly Polarized THz Radiation from Bi₂Sr₂CaCu₂O_{8+δ} Mesa Structures

*Asem Elarabi^{1,2}, Yusuke Yoshioka¹, Manabu Tsujimoto², Itsuhiro Kakeya¹

Kyoto University¹ University of Tsukuba²

Quantum information and detection

Chairpersons: Jaw-Shen Tsai (Tokyo University of Science /RIKEN) and Shigeo Sato (Tohoku University)

ED4-1-INV 14:00–14:25

Development of a commercial superconducting quantum annealing processor

*Mark W Johnson¹

D-Wave Systems Inc¹

ED4-2-INV 14:25–14:50

ASAC: Application Specific Annealing Circuit – A New Approach Towards Designing a Quantum Annealing Superconductor Integrated Circuit

*Hanpei Koike¹, Masaaki Maezawa¹, Kentaro Imafuku¹, Masakazu Hioki¹, Shiro Kawabata¹

National Institute of Advanced Industrial Science and Technology $(AIST)^1$

ED4-3-INV 14:50–15:15

Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime

*Fumiki Yoshihara¹, Tomoko Fuse¹, Sahel Ashhab², Kosuke Kakuyanagi³, Shiro Saito³, Kouichi Semba¹

National Institute of Information and Communications $Technology\,,\,Japan^1$

Qatar Environment and Energy Research Institute, Qatar² NTT Basic Research Laboratories, Japan³

ED4-4-INV 15:15–15:40

Sensing magnetization oscillation in quantum regime

*Yutaka Tabuchi¹, Yasunobu Nakamura^{1,2}

Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Japan¹ Center for Emergent Matter Science, RIKEN, Wako, Japan²

ED4-5-INV 15:40–16:05

Scanning Nano-SQUID for Nanoscale Thermal Imaging of Dissipation in Quantum System

*Dorri Halbertal¹, Jo Cuppens², Moshe Ben Shalom³, Lior Embon¹, Nitzan Shadmi⁴, Yonathan Anahory¹, Leonid Levitov⁵, Ernesto Joselevich⁴, Andre Geim³, Eli Zeldov¹

Department of Condensed Matter Physics, Weizmann Institute of Science (Israel)^1 $\,$

Catalan Institute of Nanoscience and Nanotechnology, CSIC and the Barcelona Institute of Science and Technology $(\rm Spain)^2$

National Graphene Institute and the School of Physics and Astronomy, The University of Manchester (United Kingdom)³

Dept. of Materials & Interfaces, Weizmann Inst. of Science $(Israe)\}^4$ Department of Physics, Massachusetts Inst. of Technology $(USA)^5$

Coffee break 16:05–16:20

Digital

Chairpersons: Mark Johnson (D-Wave) and Masamitsu Tanaka (Nagoya University)

ED5-1-INV 16:20–16:45

Current Progress in Adiabatic Quantum Flux Parametron

*Naoki Takeuchi^{1,3}. Christopher Ayala¹, Qiuyun Xu¹, Yuki Yamanashi^{1,2}, Nobuyuki Yoshikawa^{1,2}

Institute of Advanced Sciences, Yokohama National University¹ Department of Electrical and Computer Engineering, Yokohama National University²

PRESTO, Japan Science and Technology Agency³

ED5-2-INV 16:45–17:10

Cryogenic signal processing based on superconducting logic circuits for multi-pixel superconducting nanowire single-photon detectors

*Hirotaka Terai¹, Shigeyuki Miyajima¹, Masahiro Yabuno¹, Taro Yamashita¹, Shigehito Miki¹, Naoki Takeuchi², Shuuich Nagasawa³, Mutsuo Hidaka³

National Institute of Information and Communications ${\rm Technology}^1$

Yokohama National University²

National Institute of Advanced Industrial Science and ${\rm Technology}^3$

ED5-3 17:10–17:30

A single-flux-quantum based event-driven encoder toward a 1024-pixel single-photon imaging system

*Shigeyuki Miyajima¹, Masahiro Yabuno¹, Taro Yamashita^{1,2}, Shigehito Miki^{1,3}, Hirotaka Terai¹

National Institute of Information and Communications ${\rm Technology}^1$

PRESTO, Japan Science and Technology Agency²

Graduate School of Engineering Faculty of Engineering, Kobe Univ^3

ED5-4 17:30–17:50

Demonstration of picosecond time resolution of doubleoscillator time-to-digital converters using single-fluxquantum circuits

*Yuma Tomitsuka¹, Yutaka Abe¹, Yuki Yamanashi¹, Nobuyuki Zen², Masataka Ohkubo², Nobuyuki Yoshikawa¹ Department of Electrical and Computer Engineering, Yokohama National University¹

National Inst. of Advanced Industrial Science and Technology²

Dec. 14 (Thu.) Large Scale System Applications Hall

Large-scale applications: Reviews of the past 30 years and future perspectives

Chairpersons: Hiroyuki Ohsaki (The University of Tokyo) and Naoyuki Amemiya (Kyoto University)

AP2-1-INV 10:00–10:30

High-Field Magnets for NMR and MRI: A Review of the Past 30 Years and a Vision for the Future Perspectives

*Yukikazu Iwasa¹

Francis Bitter Magnet Laboratory, Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, USA¹

AP2-2-INV 10:30–11:00

Nuclear Fusion and Particle Accelerators: Past and Future Perspectives

*Bruce P. Strauss^{1, 2}

U. S. Department of Energy, Office of High Energy Physics 1 IEEE Council on Superconductivity 2

AP2-3-INV 11:00–11:30

Rotating Machine: A review of the past 30 years and future perspectives

*Tanzo Nitta¹

The University of Tokyo, Japan¹

AP2-4-INV 11:30-12:00 Power applications: review of the past 30 years and future perspective

*Pascal Tixador¹

Univ. Grenoble Alpes, Grenoble, France¹

Dec. 14 (Thu.) Large Scale System Applications

Room A3

Magnet science and technology

Chairpersons: Arend Nijhuis (University of Twente) and Yasuyuki Miyoshi (JASTEC)

AP3-1-INV 14:00–14:25

HTS flux pumps and the role of dynamic resistance in the HTS flux pump

*Zhenan Jiang¹, Chris W Bumby¹, Rodney A Badcock¹, Andres E Pantoja¹, Kent Hamilton¹

Victoria University of Wellington¹

AP3-2-INV14:25-14:50Two-shellSuperconductor/FerromagneticCloaksforShielding of Magnetic Fields

*Fedor Gömöry¹, Mykola Solovyov¹, Ján Šouc¹

Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava, Slovakia $^{\rm 1}$

AP3-3-INV 14:50–15:15

Numerical Analysis of Current Distribution and Stability in No-Insulation Coils Wound with REBCO Wires

*So Noguchi^{1,2,3}, Seungyong Hahn^{2,4}, Atsushi Ishiyama⁵, Yukikazu Iwasa³

Graduate School of Information Science and Technology, Hokkaido University $^{\rm 1}$

National High Magnetic Field Laboratory, Florida State Univ.² Plasma Science and Fusion Center, Massachusetts Inst. of Tech.³ Dept. of Electrical & Computer Eng., Seoul National Univ.⁴ Dept. of Electrical Engineering and Bioscience, Waseda Univ.⁵

AP3-4 15:15–15:35

Transient Heat Transfer Through the LHC Polyimide Cable Insulation

*Tiemo Winkler¹, Marcel ter Brake¹, Torsten Koettig², Rob van Weelderen²

University Of Twente, The Netherlands¹ CERN, Switzerland²

Coffee Break 15:35–16:15

Rotating machines

Chairpersons: Tabea Arndt (Siemens) and Kazuhiro Kajikawa (Kyushu University)

AP4-1-INV 16:15–16:40 Large Rotating Machines using HTS

*Tabea Arndt¹

Siemens AG1

AP4-2-INV 16:40–17:05

Application of HTS for ship propulsion motor

*Mitsuru Izumi¹

Tokyo University of Marine Science and Technology (TUMSAT)1

AP4-3-INV 17:05–17:30

Current Status of Superconducting motor for Aviation Application

*Vladimir T. Penkin¹

Moscow Aviation Institute (National Research University), $\operatorname{Russia^1}$

AP4-4-INV 17:30–17:55

Development Status of 50 kW Class Fully Superconducting Induction/synchronous Motor for Transportation Equipment

*Taketsune Nakamura¹, Ryohei Nishino¹, Tetsuji Matsuo¹, Masaaki Yoshikawa², Yoshitaka Itoh², Toshihisa Terazawa², Yoshimasa Ohashi³, Satoshi Fukui⁴, Mitsuho Furuse⁵

Kyoto University, Japan¹ IMRA MATERIAL R&D Co., Ltd, Japan² AISIN SEIKI, Co., Ltd³ Niigata University, Japan⁴ AIST, Japan⁵

Dec. 15 (Fri.) Physics and Chemistry Room A1

Cuprate superconductors

Chairpersons: Donglai Feng (Fudan University) and Riccardo Comin (Massachusetts Institute of Technology)

PC5-1-INV 10:00–10:30 Critical-Current-by-Design

*U. Welp¹, W. -K. Kwok¹, A. E. Koshelev¹, D. J. Miller², H. P. Sheng², A. Glatz^{1,3}, I. A. Sadovskyy^{1,4}, Y. Zhang⁵, M. W. Rupich⁶, S. Sathyamurthy⁶, S. Fleshler⁶, S. Eley⁷, L. Civale⁷, A. Kayani⁸, P. M. Niraula⁸, J.H. Kwon⁹, J. M. Zuo⁹

Materials Science Division, Argonne National Laboratory, USA¹ Electron Microscopy Center-CNM, Argonne National Lab., USA² Department of Physics, Northern Illinois University, USA³ Computational Institute, University of Chicago, USA⁴ SuperPower Corp., Schenectady, USA⁵ American Superconductor Corp., Devens, USA⁶ MPA & CMMS, Los Alamos National Laboratory, USA⁷ Dept. of Physics, Western Michigan University, Kalamazoo, USA⁸ Materials Research Lab., Univ. of Illinois-Urbana Champaign, USA⁹

PC5-2-INV 10:30–11:00 RESONANT SCATTERING STUDIES OF CHARGE ORDER IN QUANTUM SOLIDS

*Riccardo Comin¹

Massachusetts Institute of Technology¹

PC5-3-INV 11:00–11:30

Nematic Phase Transition at the Onset Temperature of Pseudogap in High-T_c Cuprates

*Shigeru Kasahara¹

Department of Physics, Kyoto University¹

PC5-4-INV 11:30–12:00

Hidden Fermionic excitation at the origin of hightemperature superconductivity and pseudogap in cuprates

*Shiro Sakai¹

Center for Emergent Matter Science, RIKEN, Wako, Japan¹

PC5-5-INV 12:00–12:30

Design of high-temperature topological superconductivity in curates and heavy fermions

*Youichi Yanase¹, Akito Daido¹, Kazuaki Takasan¹, Tsuneya Yoshida¹, Norio Kawakami¹

Kyoto University¹

PC5-6 12:30–12:45

Electron backscatter diffraction analysis (EBSD) on superconducting nanowires

*Anjela Koblischka-Veneva^{1,2}, Michael R. Koblischka^{1,2}, Xianlin Zeng¹, Jörg Schmauch¹, Uwe Hartmann¹

Saarland University, Experimental Physics¹ Superconducting Materials Laboratory, Department of Materials Science and Engineering, Shibaura Institute of Technology²

PC5-7 12:45–13:00

Study of oxygen exchange kinetics of $YBa_2Cu_3O_{7-\delta}$ films to achieve high carrier concentration

*Alexander Stangl¹, Anna Palau¹, Xavier Obradors¹, Teresa Puig¹

ICMAB - CSIC¹

Dec. 15 (Fri.) Wires and Bulk | Room A2

Bulk materials and their applications

Chairpersons: Hiroshi Ikuta (Nagoya University) and Miryala Muralidhar (Shibaura Institute of Technology)

WB7-1-INV 10:00–10:25

History of QMGTM and recent progress on QMGTM bulk magnets

*Mitsuru Morita¹

Advanced Technology Research Laboratories, Nippon Steel & Sumitomo Metal Corporation¹

WB7-2-INV 10:25–10:50

Collecting Ni-Sulfate Compound from Electroless Plating Waste by Magnetic Separation Technique with Use of HTS Bulk Magnets

*Tetsuo Oka¹, Sho Sasaki¹, Hideto Sasaki¹, Satoshi Fukui¹, Jun Ogawa¹, Takao Sato¹, Tomohito Nakano¹, Manabu Ooizumi¹, Morio Tsujimura², Kazuya Yokoyama³

Niigata University, Japan¹ Aichi Giken Co., Japan² Ashikaga Institute of Technology, Japan³

WB7-3 10:50–11:05

SmBCO single grain bulk superconductors via Top seeded infiltration and growth process

Devendra K Namburi¹, Wen Zhao¹, Yunhua Shi¹, Anthony R Dennis¹, John H Durrell¹ and David A Cardwell¹

Department of Engineering, University of Cambridge, UK1

Oral Session

WB7-4 11:05–11:20

How to Control the Gd211 Particles and Enhance the Levitation Force of Single Domain GdBCO Bulks Prepared by Gd+011 TSIG Method

*Wanmin Yang¹, Xiaochun Yuan¹, Chunyan Zhang¹

Dept. of Physics, Shaanxi Normal University, Xi'an, China¹

WB7-5 11:20–11:35

Single Grain Bulk YBa₂Cu₃O_y Superconductors Grown by IG process Utilising the Mixture of Yb-123+Liquid phase as a Liquid Source

*Sushma Miryala^{1,2}, Masato Murakami¹

Shibaura Institute of Technology, Japan¹ Seisen International School, Japan²

Bulk materials and their applications 2

Chairpersons: Jacques NOUDEM (University of Caen Normandy) and Kohji Kishio (AIST)

WB8-1-INV 11:50–12:15

Development of RE123 and MgB_2 Superconducting Bulk Magnets

*Atsushi Ishihara¹, Tomoyuki Akasaka¹, Taiki Onji¹, Yusuke Fukumoto¹, Masaki Sekino², Hiroyuki Ohsaki², Kohji Kishio², Toshiteru Kii³, Masaru Tomita¹

Railway Technical Research Institute¹ The University of Tokyo² Kyoto University³

WB8-2-INV 12:15–12:40 Record critical current density in sintered MgB₂ bulks

*Muralidhar Miryala¹, Masaki Higuchi¹, Miles Jirsa², Michael R Koblischka³, Masato Murakami¹

Shibaura Institute of Technology¹ Institute of Physics ASCR² Saarland University³

Lunch Break 12:40–14:00

Joint technology

Chairpersons: Amit Goyal (State University of New York) and Takato Machi (AIST)

WB9-1-INV 14:00–14:25

An Intermediate Grown Superconducting (iGS) Joint between REBCO Coated Conductors: Fabrication, Microstructure and Superconducting Properties *Kotaro Ohki¹, Tatsuoki Nagaishi¹, Takashi Yamaguchi¹, Yoshinori Yanagisawa², Renzhong Piao², Hideaki Maeda², Takeharu Kato³, Daisaku Yokoe³, Tsukasa Hirayama³, Yuichi Ikuhara^{3,4}, Hitoshi Kitaguchi⁵, Takeshi Ueno⁶, Kazama Yamagishi⁶, Tomoaki Takao⁶

Sumitomo Electric, Japan¹ RIKEN, Japan² Japan Fine Ceramics Center, Japan³ University of Tokyo, Japan⁴ National Institute for Materials Science, Japan⁵ Sophia University, Japan⁶

WB9-2-INV 14:25–14:50 Superconducting joint of REBCO wires for MRI magnet

*Shinichi Mukoyama¹, Akinobu Nakai¹, Hisaki Sakamoto¹, Shinji Matsumoto², Gen Nishijima², Mamoru Hamada³, Kazuyoshi Saito³, Yasuyuki Miyoshi³

Furukawa Electric Co., Ltd.¹ National Institute for Materials Science² Japan Superconductor Technology, Inc.³

WB9-3-INV 14:50–15:15

Magnetic Field Stability in the Persistent Current Operation of the REBCO Coil with a Superconducting Joint

*K. Takahashi¹, T. Hase¹, S. Awaji¹, A. Nakai², S. Yamano², H. Sakamoto²

Inst. for Materials Research, Tohoku University, Sendai, Japan¹ Furukawa Electric Co., Ltd., Ichihara, Japan²

WB9-4 15:15–15:30

Enhancement of Joint Properties of Various Ultrasonic Welded CC Joints

*Hyung-Seop SHIN¹, Chan Hun Jung¹

Andong National University, Andong, Korea¹

Dec. 15 (Fri.) Electronic Devices **Room C**

30-year history and beyond

Chairpersons: Horst Rogalla (Colorado University/NIST) and Mutsuo Hidaka (AIST)

ED6-1-INV 10:00-10:30 The SQUID and its Applications in the Past 30 Years

*Risto J Ilmoniemi¹

Dept. Neuroscience and Biomedical Engineering, Aalto University School of Science¹

ED6-2-INV 10:30-11:00

Superconducting Detectors: the Past 30 Years and **Future Prospects**

*Joel N Ullom^{1,2}

NIST, USA1 University of Colorado, USA²

ED6-3-INV 11:00-11:30

A Thirty-Year History of Superconducting Microwave Devices and Fundamental Studies Thereof

*Shigetoshi Ohshima¹

Yamagata University¹

ED6-4-INV 11:30-12:00

Cryogenic Digital Electronics-Challenges for Practical Use-

*Akira Fujimaki¹, Masamitsu Tanaka¹

Nagoya University, Japan¹

ED6-5-INV 12:00-12:30 Coherent superconducting circuits and quantum information - 30 years' advancements

*Jaw-Shen Tsai^{1,2}

Tokyo University of Science¹ Riken²

Dec. 15 (Fri.) Large Scale System Applications Room A3

Electric power devices and energy system

Chairpersons: Pascal Tixador (Grenoble-INP/G2Elab-IN) and Shinichi Mukoyama (Furukawa Electric)

AP5-1-INV 10:00–10:25 Design of AC 23kV 50MVA Class HTS Cable in S. Korea

*Jin Bae NA¹, Heo Gyung Sung¹, Chang Yeol Choi¹, YongSeo Jang¹, Yang Hun Kim¹

LS Cable&System¹

AP5-2-INV 10:25–10:50 DEVELOPMENT OF TRI-AXIAL SUPERDONDUCTING CABLE SYSTEM

*Tasuku Kitamura¹, Kazuhisa Adachi¹, Hideo Sugane¹, Tatsuhisa Nakanishi¹, Yuji Aoki¹, Nobuhiro Midou¹, Masataka Iwakuma², Takayo Hasegawa¹

SWCC SHOWA CABLE SYSYEMS CO., LTD. 1 KYUSHU UNIVERSITY 2

AP5-3

(Moved to LNP-8)

AP5-4-INV 11:00–11:25

Flywheel Energy Storage System Using Superconducting Magnetic Bearing for Demonstration Test

*K Nagashima¹, T Yamashita¹, M Ogata¹, Y Miyazaki¹, K Mizuno¹, S Mukoyama², K Nakao², H Sakamoto², H Shimizu³ and H Sawamura³, K Miyazaki⁴

Railway Technical Research Institute¹ Furukawa Electric Co., Ltd.² Mirapro Co., Ltd.³ Yamanashi Prefecture⁴

AP5-5-INV 11:25–11:50

Liquid hydrogen system toward hydrogen Society

*Shoji Kamiya¹

Kawasaki Heavy Industries, Ltd¹

AP5-6-INV 11:50-12:15 Progress in the development of refrigerator for HTS Cable

*Naoko Nakamura¹

MAYEKAWA MFG. CO., LTD.¹

Dec. 15 (Fri.) Late News Room A1

Chairperson: Teruo Izumi (AIST)

LN-1-INV 15:45-16:05

Enhanced Vortex-Pinning in Superconducting Wires

*Amit Goyal¹, Marty Rupich²

SUNY-Buffalo1 AMSC²

LN-2-INV 16:05-16:25

A novel route to prepare bulk superconductors: Spark **Plasma Sintering and Texturing**

*Jacques. G NOUDEM¹, Louis DUPONT^{1,2}, Rudy CAPELLE¹, Pierre BERNSTEIN¹, Richard RETOUX¹, Kevin BERGER³, Masaki HIGUCHI⁴, Miryala MURALIDHAR⁴, Masato MURAKAMI⁴

CRISMAT Laboratory, University of Caen, CNRS, France¹ CAYLAR SAS, France²

GREEN, University of Lorraine, France³

Superconducting Materials Laboratory, Graduate School of Science & Engineering, Shibaura Inst. of Technology, Japan⁴

Dec. 15 (Fri.) Closing Session | Room A1

Dec. 13 (Wed.) Physics and Chemistry **B1+B2**

Novel materials 3

Chairperson: Minoru Nohara (Okayama University)

PCP1-1 16:00–18:00

Pb Substitution effect in La(O,F)BiSSe

*Shotaro Shobu¹, Satoshi Otsuki¹, Satoshi Demura¹, Hideaki Sakata¹

Tokyo University of Science¹

PCP1-2 16:00–18:00

Unidirectional pressure effect on electrical resistivity in single crystal La(O,F)BiS₂

*Yuto Sakai¹, Takashi Ogawa¹, Ryo Ohashi¹, Yuita Fujisawa¹, Satoshi Demura¹, Hideaki Sakata¹

Department of physics, Tokyo university of science, Japan¹

PCP1-3 16:00–18:00

F Substitution Effect on supermodulation in LaO1- ${}_{\rm x}F_{\rm x}{\rm BiSe_2}\,{\rm Studied}\,{\rm by}\,{\rm STM}$

*Naoki Ishida¹, Satoshi Demura¹, Yuita Fujisawa¹, Hideaki Sakata¹

Tokyo University of Science, Japan¹

PCP1-4 16:00–18:00

Scanning tunneling microscopic observation in LaO1- ${}_{x}F_{x}Bi_{1-y}Pb_{y}S2$

*Kazuki Miyata¹, Naoki Ishida¹, Satoshi Otsuki¹, Satoshi Demura¹, Hideaki Sakata¹

Department of physics, Tokyo university of science, Japan¹

PCP1-5 16:00–18:00

Observation of Superconducting gap and Vortex lattice in the transition metal tri-calchogenide ZrTe_{3-x}Se_x by Scanning Tunneling Spectroscopy

*Satoshi Demura¹, Ryota Ishio¹, Yuita Fujisawa¹, Takashi Ogawa², Shinichi Kaneko², Satoshi Okuma², Hideaki Sakata¹

Tokyo Univ. of Science¹ Tokyo institute of Technology²

PCP1-6 16:00–18:00

Crystal structure and physical properties of layered compound LaOSbSe₂

*Hikaru Hiiragi¹, Yutaka Kitahama¹, Kazutaka Kudo¹, Seiichiro Onari¹, Hiromi Ota¹, Minoru Nohara¹

Okayama University, Japan¹

PCP1-7 16:00–18:00

Crystal Growth and Superconducting Properties of Topological Superconductor Candidates $A_x Bi_2 Se_3$ (A = Sr, Nb)

*Shun Takeda¹, Kazumune Tachibana¹, Masayuki Murase¹, Takao Sasagawa¹

Laboratory for Materials and Structures, Tokyo Institute of Technology, Kanagawa, Japan¹

PCP1-8 16:00–18:00

Crystal Growth and Superconducting Properties of Pbdoped NiBi₃ having Strong Spin-Orbit Coupling

*Keitaro Matsukawa¹, Kenjiro Okawa¹, Masayuki Murase¹, Takao Sasagawa¹

Laboratory for Materials and Structures, Tokyo Institute of Technology, Kanagawa, Japan¹

PCP1-9 16:00–18:00

Effect of Sulfur and Selenium Substitution on ZrTe₃

*Ryota Ishio¹, Satoshi Demura¹, Satoshi Otsuki¹, Yuto Sakai¹, Yuita Fujisawa¹, Hideaki Sakata¹

Department of Physics, Tokyo University of Science, Japan¹

Novel materials 4

Chairperson: Takao Sasagawa (Tokyo Institute of Technology)

PCP2-116:00-18:00Observation of surface 1T phase on 2H-NbSe2 bySTM/STS

*Yuita Fujisawa¹, Hiroya Koseki¹, Masaya Shiina¹, Shun Ohta¹, Satoshi Demura¹, Hideaki Sakata¹

Tokyo University of Science¹

PCP2-2 16:00–18:00

Effects of the Co-Intercalation of Lithium and Ethylenediamine into $1TTaS_2$ and $2HTaS_2$

*Kazuki Sato¹, Shunsuke Hosaka¹, Takashi Noji¹, Takehiro Hatakeda¹, Takayuki Kawamata¹, Masatsune Kato¹, Yoji Koike¹

Department of Applied Physics, Tohoku University, Japan¹

PCP2-3 16:00–18:00

Effect of non-magnetic rare earth substitution for Zr on mixed anion $Zr(P,Se)_2$ superconductors

*Kosuke Iwakiri^{1,2}, Taichiro Nishio¹, Kenji Kawashima^{2,3}, Shigeyuki Ishida², Kunihiko Oka², Hiroshi Fujihisa², Yoshito Gotoh², Akira Iyo², Hiraku Ogino², Hiroshi Eisaki², Yoshiyuki Yoshida², Hijiri Kito²

Tokyo Univ. of Science¹ AIST² IMRA Material R&D Co., Ltd³

PCP2-4 16:00–18:00

Single Crystal growth of mixed anion Zr(P, Se)₂ superconductor and related materials

*Hijiri Kito¹, Kousuke Iwakiri^{1,2}, Taichiro Nishio², Kenji Kawashima^{1,3}, Shigeyuki Ishida¹, Kunihiko Oka¹, Hiroshi Fujihisa¹, Yoshito Gotoh¹, Akira Iyo¹, Hiraku Ogino¹, Hiroshi Eisaki¹, Yoshiyuki Yoshida¹

National Institute of Advanced Industrial Science and Technology (AIST)¹ Tokyo University of Science² IMRA Material R&D Co., Ltd³

PCP2-5 16:00–18:00

Synthesis and Superconductivity of a Strontium Digermanide SrGe_{2.6} with ThSi₂ Structure

*Akira Iyo¹, Izumi Hase¹, Shigeyuki Ishida¹, Hijiri Kito¹, Nao Takeshita¹, Hiroshi Fujihisa¹, Yoshito Goto¹, Yoshiyuki Yoshida¹, Hiroshi Eisaki¹, Kenji Kawashima^{1,2}

National Institute of Advanced Industrial Science and Technology $(AIST)^1$ IMRA Material R&D Co. Ltd.²

PCP2-6 16:00–18:00

Electronic Structure of Novel Binary Superconductor SrGe₂: A First-principle study

*Izumi Hase¹, Takashi Yanagisawa¹, Akira Iyo¹, Hiroshi Eisaki¹, Yoshiyuki Yoshida¹, Kenji Kawashima²

National Institute of Advanced Industrial Science and Technology (AIST), Japan¹ IMRA Material R&D Co. Ltd.²

PCP2-7 16:00–18:00

The electrical resistance of gold-capped chromium thin films

*Masaki Sawabu¹, Masashi Ohashi¹, Kae Maeta¹, Hiroaki Nakanishi¹, Koki Takanashi^{2,3}, Takahide Kubota^{2,3}

Kanazawa University¹ IMR Tohoku University² CSRN Tohoku University³

PCP2-8 16:00-18:00 Diamond Anvil Cell with Boron-doped Diamond Electrodes and Undoped Diamond Insulating Layer

*Ryo Matsumoto^{1,2}, Aichi Yamashita^{1,2}, Hiroshi Hara^{1,2}, Tetsuo Irifune³, Hiromi Tanaka⁴, Hiroyuki Takeya¹, Yoshihiko Takano^{1,2} NIMS¹ Univ. of Tsukuba² Ehime univ.³ NIT, Yonago College⁴

Iron-based superconductors 3

Chairperson: Hiraku Ogino (AIST)

PCP3-1 16:00–18:00

Giant phonon softening and strong-coupling superconductivity induced by copper/phosphorus doping of BaNi₂As₂

*Minoru Nohara¹, Masaya Takasuga¹, Kazutaka Kudo¹

Okayama University, Japan¹

PCP3-2 16:00–18:00 (Withdrawn)

PCP3-3 16:00–18:00

Substitution effect of $EuAFe_4As_4$ (A = Rb, Cs) superconductor with 1144-type structure

*Kenji Kawashima^{1,2}, Shigeyuki Ishida², Kunihiko Oka², Hijiri Kito², Nao Takeshita², Hiroshi Fujihisa², Yoshito Gotoh², Hiroshi Eisaki², Yoshiyuki Yoshida², Akira Iyo²

IMRA Material R&D Co., Ltd.¹

National Institute of Advanced Industrial Science and technology $(\mathrm{AIST})^2$

PCP3-4 16:00–18:00

P and Sb doping effects in LaFeAsO_{1-y}(F,H)_y (y=0~0.3) system

*Hirokazu Tsuji¹, Masahiro Uekubo¹, Shigeki Miyasaka¹, Setsuko Tajima¹, Hajime Sagayama², Hironori Nakao², Reiji Kumai², Youichi Murakami²

Department of Physics, Osaka University, Osaka, Japan¹ Condensed Matter Research Center and Photon Factory, IMSS, KEK, Tsukuba, Japan²

PCP3-5 16:00–18:00

Effect of Post-annealing on Physical Properties of BaFe₂As₂-based Superconductors

*Shigeyuki Ishida¹, Daniel Kagerbauer², Dongjoon Song¹, Hiraku Ogino¹, Masamichi Nakajima³, Michael Eisterer², Hiroshi Eisaki¹

AIST (Japan)¹ TU Wien (Austria)² Osaka University (Japan)³

PCP3-6 16:00–18:00

Anisotropy of Critical Current Densities in $Ba_{1x}K_xFe_2As_2$ and $Ba(Fe_{1-x}Co_x)_2As_2$ with Splayed Columnar Defects

*Nozomu Ito¹, Sunseng Pyon¹, Tadashi Kambara², Atsushi Yoshida², Satoru Okayasu³, Ataru Ichonose⁴, Tsuyoshi Tamegai¹

Department of Applied Physics, The University of Tokyo, Japan¹ Nishina Center, RIKEN, Wako, Saitama, Japan²

Japan Atomic Energy Agency, Advanced Science Research Center, Tokai, Ibaraki, Japan 3

Central Research Institute of Electric Power Industry, Electric Power Engineering Research Laboratory, Kanagawa, Japan⁴

PCP3-7 16:00–18:00

Direct Current Measurement of Hall Effect in the Mixed State for the Iron-Chalcogenide Superconductors

*Ryo Ogawa¹, Tomoya Ishikawa¹, Masataka Kawai¹, Fuyuki Nabeshima¹, Atsutaka Maeda¹

Dept. of Basic Science, the Univ. of Tokyo¹

PCP3-8 16:00–18:00

Effect of excess Fe in FeTe_{0.6}Se_{0.4} on the flux pinning

*Yuji Tanaka¹, Ibuki Wada¹, Osuke Miura¹

Dept. of Electrical and Electronic Engineering, Tokyo Metropolitan University $^{\rm 1}$

PCP3-9 16:00–18:00

Gap Structure of FeSe Determined by Field-Angle-Resolved Specific Heat Measurements

*Yue Sun¹, Shunichiro Kittaka¹, Toshiro Sakakibara¹, Koki Irie², Takuya Nomoto³, Kazushige Machida², Jingting Chen⁴, Tsuyoshi Tamegai⁴

Institute for Solid State Physics (ISSP), The University of Tokyo¹ Department of Physics, Ritsumeikan University² RIKEN Center for Emergent Matter Science (CEMS)³ Department of Applied Physics, The University of Tokyo⁴

Thin film / MgB₂

Chairperson: Tsutomu Nojima (Tohoku University)

PCP4-1 16:00–18:00

Anomalous Metal Interface Effect of Iron-based Superconductors

*Ryoga tajima¹, Yukihiro Miyamoto¹, Takenori Fujii², Azusa Matsuda¹

Department of Physics, School of Advanced Science and Engineering, Waseda University, Japan¹ Cryogenic Research Center, the University of Tokyo Japan²

PCP4-2 16:00–18:00

Transport properties of FeSe epitaxial thin films under in-plane strain

*Masataka Kawai¹, Fuyuki Nabeshima¹, Atsutaka Maeda¹

Department of Basic Science, University of Tokyo, Japan¹

PCP4-3 16:00–18:00

Transport Properties of NdFeAs(O,F) Epitaxial Thin Films Grown on Vicinal-Cut MgO Substrates

*Takuya Matsumoto¹, Taito Omura², Takafumi Hatano^{1,2}, Kazumasa Iida^{1,2}, Hiroshi Ikuta^{1,2}

Dept. of Materials Physics, Nagoya Univ., Japan¹ Dept. of Crystalline Materials Science, Nagoya Univ., Japan²

PCP4-4 16:00–18:00

FABRICATION OF GRAIN BOUNDARY JUNCTIONS USING NdFeAs(O,F) SUPERCONDUCTING THIN FILMS

*Omura Taito¹, Takuya Matsumoto², Takafumi Hatano^{1,2}, Kazumasa iida^{1,2}, Hiroshi ikuta^{1,2}

Dept. of Crystalline Materials Science, Nagoya Univ., Japan¹ Dept. of Materials Physics, Nagoya Univ., Japan²

PCP4-5 16:00–18:00

Search for superconductiveity in epitaxially deposited chromium thin films

*Hiroaki Nakanishi¹, Masashi Ohashi¹, Masaki Sawabu¹, Kae Maeta¹, Takahide Kubota^{2,3}, Koki Takanashi^{2,3}

Graduate School of Natural Science and Technology, Kanazawa University¹ IMR, Tohoku University² CSRN, Tohoku University³

PCP4-6

16:00-18:00

Inelastic Scattering Rate of Electron near Superconducting Transition Temperature of NbN Thin Films

*Bunju Shinozaki¹, Shohei Ezaki², Tomotaka Odou¹, Kazumasa Makise³, Takayuki asano⁴

Department of Physics, Kyushu University, Fukuoka, Japan¹ National Astronomical Observatory of Japan, Mitaka, Japan² National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan³

Department of Applied Physics, University of Fukui, Japan⁴

PCP4-7 16:00–18:00

Observation of fluxoid states and interstitial vortices in perforated mesoscopic triangle of amorphous superconducting thin films

*Marie Mitsuishi¹, Nobuhito Kokubo¹, Satoru Okayasu², Tsutomu Nojima³, Takahiko Sasaki³

Department of Engineering Science, University of Electro-Communications, Chofu, Tokyo, Japan¹

Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan²

Inst. for Material Research, Tohoku University, Sendai, Japan³

PCP4-8 16:00–18:00

Analysis of the microstructure of bulk MgB_2 using EBSD and t-EBSD

*Anjela Koblischka-Veneva^{1,2}, Michael R. Koblischka^{1,2}, Alex Wiederhold¹, Jörg Schmauch¹, Miryala Muralidhar², Masato Murakami²

Saarland University, Experimental Physics¹ Shibaura Institute of Technology, Superconducting Materials Laboratory, Department of Materials Science and Engineering²

PCP4-9 16:00–18:00

Nanoscale Investigations of the MgB_2 Superconductor by $STM\!/STS$

*Akira Sugimoto¹, Yuta Yanase¹, Takahiro Muranaka², Toshikazu Ekino¹

IAS, Hiroshima Univ.¹ Univ. of Electro-Communications²

Dec. 13 (Tue.) Wires and Bulk **B1+B2**

APC

Chairperson: Kaname Matsumoto (Kyushu Institute of Technology)

WBP1-1 16:00–18:00

Improvement of uniformity of I_c distributions in long REBCO with BMO coated conductors by in-plume PLD method

*Akira IBI1, Takato MACHI1, Koichi NAKAOKA1, Teruo IZUMI1

National Institute of Advanced Industrial Science and Technology $(\mbox{AIST})^1$

WBP1-2 16:00–18:00

Evaluation of Laser Irradiated $\rm YBa_2Cu_3O_{7x}$ Film with $\rm BaHfO_3$

*Sei Katagi¹, Ryo Teranishi¹, Yukio Sato¹, Kenji Kaneko¹

Kyushu University Japan¹

WBP1-3 16:00–18:00

3D Study of EuBa₂Cu₃O_y and GdBa₂Cu₃O_y Coated Conductors Using Focused Ion Beam-Scanning Electron Microscopy System

Daisaku Yokoe¹, Ryuji Yoshida¹, *Takeharu Kato¹, Akira Ibi², Tsukasa Hirayama¹, Teruo Izumi²

Nanostructures Research Lab., Japan Fine Ceramics Center¹ Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology²

WBP1-4 16:00–18:00

Apparent pinning potential of SmBCO superconducting thin film with BHO artificial pins

*Kei Kashiwagi¹, Masaru Kiuchi¹, Teruo Matsushita¹, Edmund Soji Otabe¹, Yuji Tsuchiya², Yutaka Yoshida², Tadahiro Akune³, Terukazu Nishizaki³

Kyushu Institute of Technology, Japan¹ Nagoya University, Japan² Kyushu Sangyo University, Japan³

WBP1-5 16:00–18:00

Transport properties of grain boundaries in $SmBa_2Cu_3O_y$ films with $BaHfO_3$ nanorod pinning centers on bicrystal and IBAD substrates over a wide temperature and field range

*Junya Akita¹, Yuji Tsuchiya¹, Yusuke Ichino¹, Yutaka Yoshida¹

Dept. of Electrical Engineering, Nagoya University (Japan)¹

WBP1-6 16:00–18:00

The effect of deposition rate of SmBCO thin films on the pinning center formation in the process of reactive coevaporation

*Gwan-tae Kim¹, Ho-sup Kim¹, Dong-woo Ha¹, Rock-kil Ko¹, Hyun-woo No¹, Kook-Chae Chung², Kiran Shinde²

Korea Electrotechnology Research Institute, Changwon, Korea¹ Functional Nano-materials Research Department, Korea Institute of Materials Science, Changwon, Korea²

WBP1-7 16:00–18:00

Effect of flux pinning force on in-field current carrying capabilities in the force-free state of $REBa_2Cu_3O_y$ films with particulate artificial pinning centers

*Kazuki Sugihara¹, Yusuke Ichino¹, Yuji Tsuchiya¹, Ataru Ichinose², Yutaka Yoshida¹

Nagoya University, Japan¹ CRIEPI, Japan²

MOD

Chairperson: Ryo Teranishi (Kyushu University)

WBP2-1 16:00–18:00

REBCO superconductor with ultimately dispersed PrBCO for pinning centers fabricated by TFA-MOD

*Mariko Hayashi¹, Takeshi Araki¹, Hirotaka Ishii¹, Gen Nishijima², Akiyoshi Matsumoto²

Toshiba Corporation, Corporate Research & Development Center, Japan¹

National Institute for Materials Science, Japan²

WBP2-2 16:00–18:00

Co-doping effects on the fabrication of fluorine-free MOD-GdBCO films

*Seiya Kato¹, Ryusuke Kita¹, Natsuki Kobayashi², Osuke Miura²

Shizuoka University¹ Tokyo Metropolitan University²

WBP2-3 16:00–18:00

Flux pinning properties of hafnium doped Gd123 films fabricated by fluorine-free MOD method with multistage heat treatment

*Natsuki Kobayashi¹, Jouichiro Hukui¹, Ryusuke Kita², Osuke Miura¹

Dept. of Electrical and Electronic Engineering, Tokyo Metropolitan University, Japan^1

Dept. of Electrical and Electronic Engineering, Shizuoka University, $\rm Japan^2$

WBP2-4 16:00–18:00

Fabrication of coated conductor with artificial pinning center by MOD method using new calcination process

*Kazunari Kimura¹, Yasuo Takahashi¹, Yuji Aoki¹, Takayo Hasegawa¹, Koichi Nakaoka², Masashi Miura³, Teruo Izumi²

SWCC Showa Cable Systems Co., Ltd.¹ National Inst. of Advanced Industrial Science and Technology² Seikei University³

WBP2-5 16:00–18:00

Enhancement of Flux Pinning in $BaZrO_3$ -doped TFA-MOD (Y,Gd) $Ba_2Cu_3O_7$ CCs with Intermediate Heat Treatment

*Michio Sato¹, Tomonori Murakami¹, Masashi Miura¹, Akira Ibi², Koichi Nakaoka², Teruo Izumi²

Seikei University¹ AIST²

WBP2-6 16:00–18:00

Influence of Carrier Density on the In-field J_c in BaZrO₃ Doped TFA-MOD-(Y_{0.77}Gd_{0.23})Ba₂Cu₃O₇ CCs

*Ryota Oku¹, Michio Sato¹, Koki Agatsuma¹, Keita Sakuma¹, Masashi Miura¹, Akira Ibi², Koichi Nakaoka², Teruo Izumi²

Seikei University¹ AIST²

WBP2-7 16:00–18:00

The Influence of BaZrO₃ Nanoparticles on the J_c in Longitudinal Magnetic Field for TFA-MOD (Y_{0.77}Gd_{0.22})Ba₂Cu₃O_y CCs

*Kota Hirai¹, Tasuku Kusama¹, Michio Sato¹, Keita Sakuma¹, Masaru Kiuchi², Masashi Miura¹

Seikei university¹ Kyushu Institute of Technology²

WBP2-8 16:00-18:00 Annealing Treatment of CeO₂ Buffered R-Al₂O₃ for the Improvement of the Critical Current Density of TFA-MOD (Y_{0.77}Gd_{0.23})Ba₂Cu₃O₇ Films

*Keita Sakuma¹, Michio Sato¹, Masashi Miura¹

Seikei University¹

PLD

Chairperson: Yutaka Yoshida (Nagoya University)

WBP3-1 16:00–18:00

Development of New Scribing Technique by using Multiple-laser Beams for Multi-filamentary Coated Conductors

Takato Machi¹, Akira Ibi¹, Teruo Izumi¹

National Institute of Advanced Industrial Science and Technology $(\mbox{AIST})^1$

WBP3-2 16:00–18:00

Development of surface planarization process using MOD-Y₂O₃ bed layer

*Koichi Nakaoka¹, Akira Ibi¹, Takato Machi¹, Teruo Izumi¹

National Institute of Advanced Industrial Science and Technology $(\mbox{AIST})^1$

WBP3-3 16:00–18:00

Angular Dependence of J_c in YBCO Films with C-axis Correlated Nano-Rods and In-Plane Distributed Nano-Particles

*Tetsuro Sueyoshi¹, Momotaro Suenaga¹, Takaaki Furusawa¹, Shota Matsuyuki¹, Takanori Fujiyoshi¹

Kumamoto University¹

WBP3-4 16:00–18:00

Investigation of Particles formation in $GdBa_2Cu_3O_{7\cdot 6}$ coated conductors prepared by pulsed laser deposition

*Tatsuya Murakami¹, Ryo Teranishi¹, Yukio Sato¹, Kenji Kaneko¹

Dept. of Materials Physics and Chemistry, Kyushu Univ., Japan¹

WBP3-5 16:00–18:00

Enhanced pinning properties of $EuBa_2Cu_3O_{7.6}$ films with Eu_2O_3 nanoparticles fabricated by Pulsed Laser Deposition

*Won-Jae Oh¹, Jae-Eun Kim¹, Yujin Park¹, Kiran Shinde², Kookchae Chung², Sang-Im Yoo²

Dept. of Material Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, Korea¹ Department of Functional Nano Materials, Korea Institute of Materials Science, Changwon, Korea²

WBP3-6 16:00–18:00

The effect of composition ratio of Sm:Ba:Cu on the flux pinning centers in the SmBCO coated conductor

*Ho-Sup Kim¹, Gwan-Tae Kim¹, Dong-Woo Ha¹, Kook-Chae Chung², Kiran Shinde²

Korea Electrotechnology Research Institute, South Korea¹ Korea Institute of Materials Science, South Korea²

Coated conductors

Chairperson: Satoshi Awaji (Tohoku University)

WBP4-1 16:00–18:00

Enhancement of the Deposition Rate and Crystallinities for SmBa₂Cu₃O_y Coated Conductors Using Vapor-Liquid-Solid Growth Technique

*Tomohiro Ito¹, Shuya Tajiri¹, Yusuke Ichino¹, Yuji Tsuchiya¹, Ataru Ichinose², Yutaka Yoshida¹

Dept. of Electrical Engineering, Nagoya University, Japan¹ Central Research Institute of Electric Power Industry, Japan²

WBP4-2 16:00–18:00

Measurement of magnetic properties of metal substrate for REBCO coated conductor at low temperature using a single sheet tester

*Shinya Ohara¹, Takuya Nakagawa¹, Kenya Fujimoto¹, SeokBeom Kim¹, Hiroshi Ueda¹ Graduate School of Nature Science and Technology, Okayama University, Japan 1

WBP4-3 16:00–18:00

Development of self-protected HTS coil for mechanical problems in non-insulated HTS coils

*Haruyoshi Okusa¹, Kentaro Tami¹, Takahiro Tatsuta², Hiroshi Ueda¹, SeokBeom Kim¹

Graduate School of Natural Sciece and Technology, Okayama University, Japan $^{\rm 1}$

WBP4-4 16:00–18:00

Study on Electromagnetic Characteristics of Twisted Soldered-Stacked-Square (3S) HTS Wire with 1mm Width

*Yongkang Zhou¹, Zhuyong Li¹

Dept. of Electrical Engineering, Shanghai Jiao Tong Univ., China¹

WBP4-5	16:00-18:00
(Withdrawn)	

WBP4-6 16:00–18:00

CORC modeling and bending experiments with variation of cable manufacturing parameters

*A. Nijhuis^{1,} V.A. Anvar^{1,2}, M. Binet³, K.A. Yagotintsev¹, D.C. van der Laan⁴, J. Weiss⁴, T.J. Haugan⁵

Univ. of Twente, Faculty of Science & Technology, The Netherlands¹ University of Wollongong, Wollongong, Australia²

TKM College of Engineering, Department of Mechanical Engineering, Kollam, Kerala, India³

Advanced Conductor Technologies and Univ. of Colorado, USA⁴

US Air Force Research Laboratory, Wright Patterson AFB, USA⁵

WBP4-7 16:00–18:00

AC Loss Properties of Stacked REBCO Superconducting Multifilamentary Tapes under Perpendicular Magnetic Field

*Hiromasa Sasa¹, Tetsuya Ito¹, Shun Miura¹, Masataka Iwakuma¹, Teruo Izumi², Takato Machi², Akira Ibi²

Inst. of Superconductors Science & Systems, Kyushu Univ., Japan¹ National Inst. of Advanced Industrial Science & Technology, Japan²

WBP4-8 16:00–18:00

Experimental investigation and analysis on critical current of HTS tapes in current-rise-rate by Wavelet Analysis Algorithm

*Jie Chen¹, Jin Fang¹, Xinyu Fang²

The School of Electrical Engineering, Beijing Jiao-Tong University, ${\rm Beijing^1}$

The Department of Electrical and Computer Engineering, University of Victoria, Victoria 2

WBP4-9 16:00–18:00

Ic-Bending Strain Characteristics of REBCO Coated Conductor Tapes at 77 K using a Bending Beam Spring Test Rig

*Mark Angelo E. Diaz¹, Hyung-Seop Shin¹

Andong National University, Korea¹

WBP4-10 16:00–18:00

Enhancement of Delamination Strength in Cu-stabilized GdBCO CC Tapes under Transverse Tension

*Zhierwinjay M. Bautista¹, Mark Angelo E. Diaz¹, Hyung-Seop Shin¹

Andong National University, Korea¹

Joint

Chairperson: Kohki Takahashi (Tohoku University)

WBP5-1 16:00–18:00

Superconducting joint of $GdBa_2Cu_3O_y$ coated conductors by solid diffusion of the precursor films

*Tomohiro Miyajima¹, Ryo Teranishi¹, Yukio Sato¹, Kenji Kaneko¹, Miyuki Nakamura², Valery Petrykin², Sergey Lee², Satoshi Awaji³

Kyushu University¹ SuperOx Japan² Tohoku University³

WBP5-2 16:00–18:00

Fabrication of superconducting joint of ${\rm REBa}_2{\rm Cu}_3{\rm O}_y$ coated conductors by crystallization of additional precursor films

*Ryo Teranishi¹, Tomohiro Miyajima¹, Kazuya Hiramatsu¹, Yukio Sato¹, Kenji Kaneko¹, Miyuki Nakamura², Valery Petrykin², Sergey Lee², Satoshi Awaji³

Kyushu University, Japan¹ SuperOx Japan LLC, Japan² Tohoku University, Japan³

WBP5-3 16:00–18:00

Several methods to reduce the resistance of nonsuperconducting joint

*Yunhao Pan¹, Wei Wu¹, Zhuyong Li¹

Shanghai Jiao Tong University (SJTU), The School Of Electronic, Information And Electrical Engineering, China $^{\rm 1}$

WBP5-4 16:00-18:00 Superconducting Joints Using Bi-added PbSn Solders

Ryo Matsumoto^{1,2}, Hirotsugu Iwata^{1,2}, Aichi Yamashita^{1,2}, Hiroshi Hara^{1,2}, Gen Nishijima¹, Hiromi Tanaka³, Masashi Tanaka⁴, Hiroyuki Takeya¹, *Yoshihiko Takano^{1,2}

NIMS1 Univ. of Tsukuba² NIT. Yonago College³ Kyushu Inst. Tech.4

WBP5-5 16:00-18:00

Recent Progress on Superconducting Joint Technique of MgB₂ Wires at Korea University

*Young-Gyun Kim¹, Byeongha Yoo¹, Jiman Kim^{1,2}, Duck Young Hwang², Haigun Lee¹

Department of Materials Science and Engineering, Korea University, Seoul, Korea¹ Kiswire Advanced Technology Co., Ltd., Daejeon, Korea²

Simulation

Chairperson: Yasunori Mawatari (AIST)

WBP6-1 16:00-18:00

Numerical Study to Reduce the Effect of the Screening Field for Compact HTS NMR Magnets

*Masato Kirai¹, SeokBeom Kim¹, Hiroshi Ueda¹, Keito Sugo¹, Shoki Ishii¹

Graduate School of Natural Science and Technology, Okayama University¹

WBP6-2 16:00-18:00

Numerical Simulation on Coupling Current for Multifilamentary HTS Wire

*Tomoaki Koizumi¹, Eisuke Morikawa¹, SeokBeom Kim¹, Hiroshi Ueda¹

Okayama University, Japan¹

WBP6-3 16:00-18:00

Analysis of Magnetization and Loss on a Twisted Superconducting Tape Wire in a Constantly Ramping Magnetic Field

*Yoichi Higashi¹, Huiming Zhang², Yasunori Mawatari¹

National Institute of Advanced Industrial Science and Technology (AIST)1 Chinese Electric Power Research Institute (CEPRI)²

16:00-18:00 **WBP6-4** Electromagnetic Coupling of Multi-Filamentary

Superconducting Tape Wires in Ramping Magnetic Fields

*Yoichi Higashi¹, Yasunori Mawatari¹

National Institute of Advanced Industrial Science and Technology $(\mbox{AIST})^1$

WBP6-5 16:00–18:00

TDGL simulation on the motion of flux lines with different kinds of pins in thin superconducting wire in transverse magnetic field

*Kenta Tanimura¹, Edmund Soji Otabe¹, Kiuchi Masaru¹, Yasunori Mawatari², Tetsuya Matsuno³

Kyushu Institute of Technology, Fukuoka, Japan¹

National Institute of Advanced Industrial Science and Technology(AIST), Tsukuba, Japan²

National Inst. of Technology Ariake College, Fukuoka, Japan³

Bi-system

Chairperson: Akiyoshi Matsumoto (NIMS)

WBP7-1 16:00–18:00

The microstructure characterization and phase composition analysis of (Bi,Pb)-2223 Ag/tapes with SnO, MgO and Ag₂O mix-doping

*Xiaoye Lu¹, Danqing Yi², Taisuke Fujino¹, Akihiko Nagata¹

Akita University, Japan¹ Central South University, China²

WBP7-2 16:00–18:00

Effects of rolling passes on the transport properties of 37filamentary AgAu sheathed Bi-2223 tapes

*Xiaobo Ma^{1,2}, Shengnan Zhang², Guo-qing Liu², Huiling Zheng², Chengshan Li², Pingxiang Zhang^{1,2}, Jinshan Li¹

State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, China¹

Northwest Inst. for Nonferrous Metal Research (NIN), Xi'an, China²

WBP7-3 16:00–18:00

Effect of grinding method on the precursor powder of Bi2223 and properties of strip

Guoqing Liu¹, Huiling Zheng¹, *Pengfei Wang¹, Qingbin Hao¹, Shengnan Zhang¹, Xiaoyan Xu¹, Gaofeng Jiao¹, Lijun Cui², Chengshan Li¹

Northwest Institute For Nonferrous Metal Research, China¹ Western Superconducting Technology Co., Ltd, China²

WBP7-4 16:00–18:00

Longitudinal magnetic field effect in critical current

characteristics of Bi-2223 superconducting tape

*Xuan Wu^{1,2}, Baorong Ni¹

Department of Information Electronics, Fukuoka Institute of Technology, Japan¹ School of Electronic and Optical Engineering, Nanjing

School of Electronic and Optical Engineering, Nanjing University of Science and Technology, China²

Nb₃Sn, MgB₂ and Fe-based

Chairperson: Yoshiyuki Yoshida (AIST)

WBP8-1 16:00–18:00

Use of Cu-Mg alloy matrix in internal diffusion process Nb3Sn wires

*Zhou YU^{1,2}, Yong Zhao¹, Nobuya Banno², Kyoji Tachikawa²

Southwest Jiaotong University, Superconductivity and New Energy Research Center, Chengdu, China¹ National Institute for Materials Science, Tsukuba, Japan²

WBP8-2 16:00–18:00

Preparation of Nb₃Al superconducting tapes by a powder-in-tube method combined with hot-pressed sintering

Wenjie Zhang¹, Wenjia Lin¹, Pingyuan Li², Liang Zheng¹, Xinsheng Yang¹, Zhou Yu¹, Xifeng Pan², Guo Yan², Yong Zhao¹, *Yong Zhang¹

Southwest Jiaotong University¹ Western Superconducting Technologies (WST) Co., Ltd.²

WBP8-3 16:00–18:00

Effect of Bending Strain on Critical Current of Reacted MgB₂ Mono- and Multi-filament Wires

*Byeongha Yoo¹, Young-Gyun Kim¹, Jiman Kim^{1,2}, Duck Young Hwang², Haigun Lee¹

Department of Materials Science and Engineering, Korea University, Scoul, Korea¹

Kiswire Advanced Technology Co., Ltd., Daejeon, Korea²

WBP8-4 16:00–18:00

Fabrication Process and Pressure Dependence of Critical Current Density in Ba_{1-x}K_xFe₂As₂ Superconducting HIP Wires

*Sunseng Pyon¹, Takahiro Suwa¹, Tsuyoshi Tamegai¹, Katsutoshi Takano², Hideki Kajitani², Norikiyo Koizumi², Satoshi Awaji³

Dept. of Appl. Phys., Univ. of Tokyo, Japan¹ Naka Fusion Institute, National Institutes for Quantum and Radiological Science and Technology, Japan² High Field Laboratory for Superconducting Materials, Institute

High Field Laboratory for Superconducting Materials, Institute for Materials Research, Tohoku University, Japan³

WBP8-5 16:00–18:00

Enhancement of Critical Current Density in AgSnsheathed (Sr,Na)Fe₂As₂ Superconducting Tapes

*Takahiro Suwa¹, Sunseng Pyon¹, Tsuyoshi Tamegai¹, Satoshi Awaji²

Department of Applied Physics, The University of Tokyo, Japan¹ High Field Laboratory for Superconducting Materials, Institute for Materials Research, Tohoku University, Japan²

WBP8-6 16:00–18:00

Fabrication and Critical Current Properties of Powderin-tube Ba_{1-x}Na_xFe₂As₂ Wires and Tapes

*Shota Imai^{1,2}, Shoko Itou^{1,2}, Tatsuya Asou^{1,2}, Shigeyuki Ishida², Yoshinori Tsuchiya², Akira Iyo², Hiroshi Eisaki², Kunio Matsuzaki², Taichiro Nishio¹, Yoshiyuki Yoshida²

Department of Physics, Tokyo University of Science¹ National Institute of Advanced Industrial Science and Technology $(\rm AIST)^2$

Bulk materials

Chairperson: Tomoyuki Akasaka (Railway Technical Research Institute)

WBP9-1 16:00–18:00

Optimization of growth parameters for fabricating single grain (Gd, Dy)BCO bulk superconductors in top-seeded infiltration growth process

*Pavan Kumar Naik S1, Muralidhar M1, Murakami M1

Shibaura Institute of Technology, Toyosu, Tokyo, Japan¹

WBP9-2 16:00–18:00

Effect of CeO_2 on the properties of single domain GdBCO bulk superconductors fabricated by Gd+011 TSIG Process

*Pengtao Yang¹, Wanmin Yang¹

College of Physics and Information Technology, Shaanxi Normal University, Xi'an, China $^{\rm 1}$

WBP9-3 16:00–18:00

Large single grain bulk $GdBa_2Cu_3O_y$ grown by IG process utilizing the $ErBa_2Cu_3O_y$ +liquid as a liquid source

*Yuta Nakanishi¹, Muralidhar Miryala¹, Masato Murakami¹

Shibaura Institute of Technology¹

WBP9-4 16:00–18:00

The effect of cooling rate on critical current density and microstructure of single grain bulk $YBa_2Cu_3O_y$

superconductors grown by IG process

*Santosh Kumar Miryala^{1,2}, S Pavan Kumar Naik², Masato Murakami²

Faculty of Arts and Science, Univ. of Toronto, Toronto, Canada¹ Superconducting Materials Laboratory, Dept. of Materials Science and Engineering, Shibaura Inst. of Technology, Toyosu, Japan²

WBP9-5 16:00–18:00

Study on the Torque Property of Non-Contact Rotating System Using HTS Bulks and Permanent Magnets

*Koichiro Tateishi¹

Graduate School of Nature Science and Technology, Okayama University, Japan¹

WBP9-6 16:00–18:00

Effects of Nanodiamond Addition on Critical Current Density in Y-Ba-Cu-O Bulk Superconductors

*Kazuo Inoue¹, Hirosuke Fujii¹, Muralidhar Miryala¹, Masato Murakami¹

Shibaura Institute of Technology, Japan¹

WBP9-7 16:00–18:00

Basic Design of Electromagnets to Prevent the Overshoots in 3-D Superconducting Actuator

*Yusuke Hiratsuka¹, Takao Yamasaki¹, Atsuo Nakashima^{1,2}, SeokBeom Kim¹, Hiroshi Ueda¹

Graduate School of Natural Science and Technology, Okayama University, Japan 1

Okayama University, Japan²

WBP9-8 16:00–18:00

Trapping Large Magnetic Field by Suppression of Thermomagnetic Instability in Coated Conductor Stacks

*Tomohiro Hashimoto¹, Sunseng Pyon¹, Tsuyoshi Tamegai¹

Department of Applied Physics, The University of Tokyo¹

WBP9-9 16:00–18:00

Effects of SPS pressure on the mechanical properties of high packing ratio bulk MgB_2 superconductor

*Akira Murakami¹, Akifumi Iwamoto², Jacques Noudem³

National Institute of Technology, Ichinoseki College, Japan¹ National Institute for Fusion Science, Japan² CRISMAT-CNRS UMR 6508/UNICAEN-ENSICAEN, France³

WBP9-10 16:00–18:00

 MgB_2 bulk superconductors prepared through a powder reaction method using MgB_4 and Mg powders

D. N. Kim¹, B.-H. Jun¹

Korea Atomic Energy Research Institute¹

WBP9-11 16:00–18:00

Flux pinning and superconducting properties of MgB_2 -diamond nanocomposites

*Longji Joseph Dadiel¹, Muralidhar Miryala¹, Masato Murakami¹

Shibaura Institute of Technology¹

WBP9-12 16:00–18:00

High performance bulk FeSe produced by silver addition and ball-milling technique

*Kouichi Furutani¹, Miryala Muralidhar¹, Michael Koblischka², Masato Murakami¹

Shibaura Institute of Technology, Japan¹ Saarland University, Germany²

WBP9-13 16:00–18:00

High Performance Y123 Superconductor Bulks and Thick Films for Practical Applications

*XIN YAO¹

School of Physics & Astronomy, Shanghai Jiao Tong Univ., China¹

Dec. 13 (Wed.) Large Scale System Applications D1+D2

Motors and generators

Chairperson: Taketsune Nakamura (Kyoto University)

APP1-1 16:00–18:00

Design and Test Results of a Quench Protection Circuit for a HTS Ship Propulsion Motor

*Yohei Murase¹, Mitsuru Izumi², Tamami Oryu¹, Minoru Yokoyama¹, Katsuya Umemoto¹, Toshiyuki Yanamoto^{1,2}

Kawasaki Heavy Industries, Ltd.¹ Tokyo University of Marine Science and Technology²

APP1-2 16:00–18:00

Optimal Design of a Superconducting Motor for Electricdrive Aeropropulsion Based on Finite-Element Analysis and Genetic Algorithm

*Weilu Kong¹, Yutaka Terao², Hiroyuki Ohsaki²

Department of Electrical Engineering and Information Systems, Graduate School of Engineering, University of Tokyo, Japan¹ Department of Advanced Energy, Graduate School of Frontier Sciences, University of Tokyo, Japan² **APP1-3** 16:00–18:00

Design and Electrical Performance of Prototype Winding for Closed-Circuit Magnetization

*Keita Tsuzuki¹, Yunosuke Suzuki¹, Sho Yamamura¹, Dai Oikawa², Takehiko Tsukamoto², Hiroya Ando¹

Department of Information and Computer Engineering, National Institute of Technology, Toyota College.¹

Department of Electrical and Electronic Engineering, National Institute of Technology, Toyota College.²

APP1-4 16:00–18:00

Design and Analysis of Air-Core Superconducting Generator for Wind Power Applications

*Han-Wook Cho¹, Matthew Feddersen², Kiruba Haran²

University of Illinois at Urbana-Champaign²

APP1-5 16:00–18:00

Design of a Characteristic Evaluation Device for the Field Coil of Superconducting Wind Power Generator

*Changhyun Kim¹, Hae Jin Sung¹, MinWon Park¹, InKeun Yu^1

Chang Won National University¹

APP1-6 16:00–18:00

Design and thermal analysis of an HTS module coil for a 12 MW wind power generator

*Tat-Thang Le¹, Hae-Jin Sung¹, Byeong-Soo Go¹, Oyunjargal Tuvdensuren¹, Minwon Park¹, In-Keun Yu¹

Changwon National University, Republic Of Korea¹

APP1-7 16:00–18:00

Structural Design and Heat Load Analysis of a Flux Pump based HTS Module Coil for a Large Scale Wind Power Generator

*Oyunjargal Tuvdensuren¹, Haejin Sung¹, Byeong soo Go¹, Tat-Thang Le¹, Minwon Park¹, In-Keun Yu¹

Changwon National University¹

Transmission cables and cooling systems

Chairperson: Naoko Nakamura (Mayekawa MFG)

APP2-1 16:00–18:00

Heat Leak and Pressure Drop Measurements of the 1000 m Class Superconducting DC Power Transmission System in Ishikari

*Hirofumi Watanabe¹, Yury Ivanov¹, Noriko Chikumoto¹, Satarou Yamaguchi¹, Kotaro Ishiyama², Zenji Oishi²,

Michihiko Watanabe³, Takato Masuda³

Chubu University¹ Chiyoda Corporation² Sumitomo Electric Industries, Ltd.³

APP2-2 16:00-18:00 Fluid characteristic of liquid nitrogen flowing in HTS cable

*Osamu MARUYAMA¹, Tomoo Mimura¹

Tokyo Electric Power Company Holdings¹

APP2-316:00-18:00HydraulicEvaluation ofPressureDropsandTemperatureProfilesinLiquidNitrogenCirculationCoolings for HTSPowerTransmissionCables

*Kazuhiro Kajikawa¹, Kenta Tadakuma¹, Yasuharu Kamioka², Atsushi Ishiyama², Shinsaku Imagawa³, Taketsune Nakamura⁴, Hirokazu Hirai⁵

Kyushu University, Japan¹ Waseda University, Japan² National Institute for Fusion Science (NIFS), Japan³ Kyoto University, Japan⁴ Taiyo Nippon Sanso Corp., Japan⁵

Electric power applications

Chairperson: Tomonori Watanabe (Chubu Electric Power Co.)

APP3-1 16:00-18:00 Three-Dimensional Thermal Analysis of an SFCL REBCO Coil Immersed in Liquid Nitrogen

*Kezhen Qian¹, Toshiki Shiratani², Yutaka Terao², Hiroyuki Ohsaki²

Graduate School of Engineering, The University of Tokyo, Japan¹ Graduate School of Frontier Sciences, The Univ. of Tokyo, Japan²

APP3-2 16:00–18:00

Combined Use of SFCL and SMES for Augmenting FRT Performance and Smoothing Output Power of PMSG Based Wind Turbine

*Lei Chen¹, Hongkun Chen¹, Xin Liu¹, Yanjuan Yu¹

Wuhan University, China¹

APP3-316:00-18:00HILS of Transmission Line Protection System for the
application of the SFCL to Korean power system

*SEUNG RYUL LEE¹, JONG-JOO LEE¹, Dinh Minh Chau²

KERI¹ KEPCO²

APP3-4 16:00–18:00

A feasibility study of smart high-temperature superconducting cable to improve stability of KEPCO system

*Sangsoo Seo¹, Seung Ryul Lee¹

Korea Electrotechnology Research Institute¹

APP3-5 16:00–18:00

Study on Configuration of a Single-phase Air-core Bi2223 High Temperature Superconducting Transformer for a Large AC Current Supply

*Yuhi Tanaka¹, Nozomu Nanato¹, Mikishi Kondo¹, Takahiro Niwase¹

Okayama University, Japan¹

APP3-6 16:00–18:00

Design and Performance analysis of a 1,500 A, 400 mH Class Superconducting DC Reactor Coil using 2G Multiply HTS wire

*Jae-In Lee¹, Changhyeong Lee¹, Sung-Kyu Kim², Tae-Kyu Kim¹, Minwon Park¹, In-Keun Yu¹

Korea Electrotechnology Research Institute Korea²

APP3-7 16:00–18:00

Design and Demonstration of a Double-Pancake Coil for SMES using MgB_2 multi-strand cable

*Tsuyoshi Yagai¹, Sinya Mizuno¹, Toru Okubo¹, Sora Mizuochi¹, Masahiro Kamibayashi¹, Nama Jinbo¹, Tomoaki Takao¹, Yasuhiro Makida², Takakazu Shintomi², Naoki Hirano³, Toshihiro Komagome⁴, Kenichi Tsukada⁴, Taiki Onji⁵, Yuki Arai⁵, Masaru Tomita⁵, Daisuke Miyagi⁶, Makoto Tsuda⁶, Takataro Hamajima⁴

Sophia University¹ High Energy Accelerator Research Organization KEK² Chubu Electric Power Co. Inc.³ Mayekawa MFG Co. Ltd.⁴ Railway Technical Research Institute⁵ Tohoku University⁶

Large scale applications and magnet technology

Chairperson: Shinji Matsumoto (NIMS)

APP4-1 16:00-18:00 Solenoidal Magnet for Multi-Purpose Detector at NICA

*Nikita Emelianov¹, Vladimir Kekelidze¹, Georgy Kekelidze¹, Vyacheslav Golovatiuk¹, Nikolay Topilin¹, Alexander Vodopianov¹, Evgeny Koshurnikov², Oleg Kovalchuk², V Ochrimenko², Andrea Maffini³ Joint Institute for Nuclear Research (Russia)¹ Research-and-production enterprise "Neva-Magnet" (Russia)² ASG Superconductors s.p.a. (Italy)³

APP4-2 16:00–18:00

Effect of electromagnetic force on the hydraulic characteristics of a quad-pancake coil wound with a Nb₃Sn CIC conductor

*Tetsuhiro Obana¹, Kazuya Takahata¹, Shinji Hamaguchi¹, Hirotaka Chikaraishi¹, Shinsaku Imagawa¹, Toshiyuki Mito¹, Haruyuki Murakami², Kyohei Natsume², Kaname Kizu²

National Institute for Fusion Science¹ National Inst. for Quantum and Radiological Science & Technology²

APP4-3 16:00–18:00

Thermal Properties of Heat Pipes for Conduction Cooled HTS Coils

*Jun Tokushige¹, Akifumi Kawagoe¹, Toshiyuki Mito², Nagato Yanagi², Shinji Hamaguchi², Suguru Takada², Naoki Hirano^{2,3}

Kagoshima University, Japan¹ National Institute for Fusion Science, Japan² CHUBU Electric Power Co, Japan³

APP4-4 16:00–18:00

Effect of Surface-treated Carbon Nanotube (CNT) Fillers in Epoxy Composites on Thermal and Electrical Stabilities of Superconducting Coils

*Hyun Hee Son¹, Yoon Hyuck Choi¹, Young-Gyun Kim¹, Jihoon Lee¹, Haigun Lee¹

Department of Materials Science and Engineering, Korea University, Seoul, Korea $^{\rm 1}$

APP4-5 16:00–18:00

Ac Loss Measurements of High Current HTS Cables

*Ryuki Toyomoto¹, Naoyuki Amemiya¹

Kyoto University¹

APP4-6 16:00–18:00

Ac Loss Analyses of Twisted Stacked-Tape Cables

*Yudai Mizobata¹, Naoki Tominaga¹, Naoyuki Amemiya¹ Kyoto University¹

Magnet protection

Chairperson: Tsuyoshi Wakuda (Hitachi)

APP5-1 16:00-18:00 A Study on Active Protection for Prototype 1.0-T MgB₂ Magnet *Jihoon Lee¹, Jong Cheol Kim¹, Young-Gyun Kim¹, Hyun Hee ${\rm Son^1},$ Haigun Lee¹

Department of Materials Science and Engineering, Korea University, Seoul, Korea $^{\rm 1}$

APP5-2 16:00–18:00

Protection System for Normal Transitions in a Singlephase Bi2223 Full Superconducting Transformer by the Active Power Method under Flowing Various Frequency Current

*Takaaki Ono¹, Takahumi Adachi¹, Takahito Yamanishi¹, Nozomu Nanato¹

Okayama University, Japan¹

APP5-3 16:00–18:00

High Resolution Location of Normal Transitions in A High Temperature Superconducting Coil by Capacitor Type Voltage Terminals

*Hironobu Kumagai¹, Nozomu Nanato¹

Okayama University, Japan¹

APP5-4 16:00–18:00

Study on a Magnetic Flux Detection Coil for Detection of Normal Transitions in a Hybrid Single-phase Bi2223 Superconducting Transformer by the Active Power Method

*Shinichi Tanaka¹, Shota Tenkumo¹, Nozomu Nanato¹

Okayama University¹

APP5-5 16:00–18:00

The Effect of Turn-to-Turn Contact Resistance on the Electrical and Mechanical Characteristics of 2G HTS Pancake Coils

*Guangda Wang¹, Liang Li¹, Shaoliang Wang¹, Quanliang Cao¹, Wenzhang Guo¹

Huazhong University of Science and Technology, Wuhan, China¹

APP5-6 16:00–18:00

Investigation on Thermal and Electrical Characteristics of Metal-clad GdBCO Coil

*Jimin Kim¹, Jong Cheol Kim¹, Yoon Hyuck Choi¹, Young-Gyun Kim¹, Haigun Lee¹

Department of Materials Science and Engineering, Korea University, Seoul, Korea $^{\rm 1}$

Novel applications

Chairperson: Mitsuho Furuse (AIST)

APP6-1 16:00–18:00

Deign of a high temperature superconducting magnet for a single silicon crystal growth system

*Van Quan Dao¹, Chankyeng Lee¹, Jongho Choi², Minwon Park¹, In-Keun Yu¹

Changwon National University¹ Supercoil Co., Ltd²

APP6-2 16:00–18:00

Development of a low temperature superconducting magnet with MgB_2 wire for a 10 kW DC induction furnace

*Chankyeong Lee¹, Jongho Choi^a, Sang-ho Cho¹, Van Quan Dao², Minwon Park², In-keun Yu²

SUPERCOIL Co., Ltd.(jhchoi@supercoil.co.kr)¹ Changwon National University²

APP6-3 16:00–18:00

Analysis of a Superconducting Inductive Pulsed Power Supply for Electromagnetic Railguns

*Xukun Liu^{1,2}, Xinjie Yu^{1,2}

Department of Electrical Engineering, Tsinghua Univ., China 1 State Key Laboratory of Power System, China 2

APP6-4 16:00–18:00

Study on the basic design of multiple HTS magnets for single-sided compact MRI device

*Yoshikazu Tomisaka¹, Ryota Nomura¹, Kento Kotani², Naoki Arioka², Hiroshi Ueda¹, SeokBeom Kim¹

Graduate School of Natural Science and Technology, Okayama University, Japan $^{\rm 1}$

Electrical & Communication Engineering, Okayama Univ., Japan²

Dec. 15 (Fri.) Physics and Chemistry **B1+B2**

Cuprate superconductors 2

Chairperson: Hiroshi Eisaki (AIST)

PCP5-1 13:45–15:45

Cu hyperfine coupling constants of HgBa₂CaCu₂O₆₊₆

*Yutaka Itoh¹, Takato Machi², Ayako Yamamoto³

Department of Physics, Graduate School of Science, Kyoto Sangyo University, Japan¹

AIST Tsukuba East, Research Inst. for Energy Conservation, Japan² Graduate School of Engineering and Science, Shibaura Institute of Technology, Japan³

PCP5-2 13:45–15:45

Rare-earth dependence of in-plane anisotropy of resistivity in Bi2201 series high temperature superconductors

*Makoto Kawaguchi¹, Takahiro Urata¹, Hiroshi Ikuta¹

Department of Materials Physics, Nagoya University, Japan¹

PCP5-3 13:45–15:45

Effect of Ba-substitution for Sr in the Bi-2201 Phase of BiPb(Sr,La)_2CuO_{6+\delta}

*Daiki Hayakawa¹, Tomoaki Watanabe¹, Tianwen Luo¹, Takayuki Kawamata¹, Takashi Noji¹, Masatsune Kato¹, Yoji Koike¹

Dept. of Applied Physics, Tohoku University, Sendai, Japan¹

PCP5-4 13:45–15:45

Superconductivity above 100 K in the Bi-2212 Phase of $(Bi,Pb)_2Sr_2CaCu_2O_8$

*Keichi Sugawara¹, Chiaki Sugimoto¹, Tianwen Luo¹, Takashi Noji¹, Masatsune Kato¹, Yoji Koike¹

Dept. of Applied Physics, Tohoku University, Sendai, Japan¹

PCP5-5 13:45–15:45

Preparation of (11n) Oriented Bi₂Sr₂CaCu₂O_{8+x} Thin Films by Solution Methods using NdGaO₃ (100) Substrates

*Yasuyuki YAMADA¹, Tomoichiro OKAMOTO²

Department of Innovative Electrical and Electronic Engineering, National Institute of Technology, Oyama College, JAPAN¹ Electrical, Electronics and Information Engineering, Nagaoka University of Technology, JAPAN²

PCP5-6	13:45 - 15:45			
Intermediate	Phase	Evolution	of	YBCO

Superconducting Film Fabricated by Fluorine Free MOD Method

*ZUO Junliang¹, ZHAO Yue^{1,2}, WU Wei^{1,2}, CHU Jingyuan¹, ZHANG Zhiwei^{1,2}, HONG Zhiyong^{1,2}, JIN Zhijian^{1,2}

Shanghai Jiaotong University Shanghai China¹ Shanghai Superconductor Technology Co., Ltd Shanghai China²

PCP5-7 13:45–15:45

Superconductivity and magnetism in lanthanoidsubstituted FeSr₂YCu₂O₆₊₅

*Takashi Mochiku¹, Yoshiaki Hata², Isamu Iida², Yukihiko Yoshida³, Akinori Hoshikawa³, Toru Ishigaki³, Hiroshi Yasuoka², Kazuto Hirata¹

National Institute for Materials Science, Japan¹ National Defense Academy, Japan² Ibaraki University, Japan³

PCP5-8 13:45-15:45Dependence of T_c on the *RE*-ion Size in (*RE*,Ca)Ba₂Cu₃O₆

*Kohei Nakagawa¹, Yoshiki Sumino¹, Hiroki Chiba¹, Keon Kim¹, Takashi Noji¹, Masatsune Kato¹, Yoji Koike¹

Dept. of Applied Physics, Tohoku University, Sendai, Japan¹

PCP5-9 13:45–15:45

Dependence of critical temperature on chemical composition in $Y(Sr,Ba)_2(Cu,Mo)_3O_z$ (z~7)

*Toshihiko Maeda^{1,2}, Takanori Okazaki¹, Takashi Akesaka¹, Yoshihiro Yamada¹, Keisuke Ozaki¹

School of Environmental Science and Engineering, Kochi University of Technology¹

Center for Nanotechnology, Kochi University of Technology²

Cuprate superconductors 3

Chairperson: Ryotaro Arita (RIKEN)

PCP6-1 13:45–15:45 Phase Diagram of High-Temperature Superconducting Cuprates and Iron Pnictides

*Kazuhisa Nishi¹

University of Hyogo¹

PCP6-2 13:45–15:45

An Analysis of high- T_c cuprates in the superconducting state incorporating strong correlation effects based on a self-consistent perturbation expansion

*Hiroki Morita¹, Takafumi Kita¹

Department of Physics, Hokkaido University¹

PCP6-3 13:45–15:45

Impurity-induced Mott transition in Doped Hubbard model

*Hisatoshi Yokoyama¹, Ryo Sato¹, Kenji Kobayashi²

Department of Physics, Tohoku University, Japan¹ Dept. of Natural Science, Chiba Institute of Technology, Japan²

PCP6-4 13:45–15:45

Interhole correlation and Phase Separation in t-J model

*Ryo Sato¹, Hisatoshi Yokoyama¹

Tohoku University, Japan¹

PCP6-513:45-15:45InterplaybetweenStaggeredFluxandd-WaveSuperconductingOrders in t-t'-J Model

*Kenji Kobayashi¹, Hisatoshi Yokoyama²

Chiba Institute of Technology, Japan¹ Tohoku University, Japan²

PCP6-6 13:45–15:45

Effects of Diagonal Hopping on Loop Currents in Fermionic Hubbard Model

*Yuta Toga¹, Hisatoshi Yokoyama²

ESICMM, National Institute for Materials Science, Japan¹ Department of Physics, Tohoku University, Japan²

PCP6-7 13:45–15:45

Optimized wave function by kinetic renormalization effect in strongly correlated region of the three-band d-p model for cuprate superconductors

*Takashi Yanagisawa¹, Izumi Hase¹, Mitake Miyazaki², Kunihiko Yamaji¹

National Inst. of Advanced Industrial Science and Technology ^ Hakodate Institute of Technology ^ $\!\!\!\!2$

Vortex Physics 2

Chairperson: Takekazu Ishida (Osaka Prefecture University)

PCP7-1 13:45–15:45 AC Resistivity of Driven Vortices of a Superconductor Measured by Mirowave technique

*Hodaka Kurokawa¹, Fuyuki Nabeshima¹, Atsutaka Maeda¹

Dept. of Basic science, The University of Tokyo, Komaba, Japan¹

PCP7-2 13:45–15:45

Estimation of the size of the pinning potential from ac current-voltage characteristics

Satono Moriya¹, Yasuki Kawamura¹, Koichiro Ienaga¹, *Shinichi Kaneko¹, Satoshi Okuma¹

Department of Physics, Tokyo Institute of Technology, Japan¹

PCP7-3 13:45–15:45

Partial reordering of dc plastic flow by superimposing ac drive

*Takashi Ogawa¹, Mihaly Dobroka¹, Koichiro Ienaga¹, Shinichi Kaneko¹, Satoshi okuma¹

Department of Physics, Tokyo Institute of Technology, Japan¹

PCP7-4 13:45–15:45

Blocking phenomenon in a vortex system

*Takahide Minemura¹, Koichiro Ienaga¹, Takashi Ogawa¹, Takumi Arai¹, Shun Maegochi¹, Shin-ichi Kaneko¹, Satoshi Okuma¹

Department of Physics, Tokyo Institute of Technology, Japan¹

PCP7-5 13:45–15:45

Random organization and reversible-irreversible transition of vortices in tilted field

*Yudai Shirahata¹, Koichiro Ienaga¹, Mihaly Dobroka¹, Shinichi Kaneko¹, Satoshi Okuma¹

Department of Physics, Tokyo Institute of Technology, Japan¹

PCP7-6 13:45–15:45

Configuration of vortices in dc flow interacting with random pinning

*Koichiro Ienaga¹, Mihaly Dobroka¹, Shin-ichi Kaneko¹, Satoshi Okuma¹

Department of Physics, Tokyo Institute of Technology, Japan¹

PCP7-7 13:45–15:45

Observation of Vortex Motion Using Scanning Tunneling Spectroscopy

*Koshiro Kato¹, Takashi Ogawa¹, Shin-ichi Kaneko¹, Koichiro Ienaga¹, Hideaki Sakata², Satoshi Okuma¹

Department of Physics, Tokyo Institute of Technology, Japan¹ Department of Physics, Tokyo University of Science, Japan²

PCP7-8 13:45–15:45

Microscopic theory of the vortex-core charging in superconductors

*Marie Ohuchi¹, Hikaru Ueli¹, Takafumi Kita¹

Department of Physics, Hokkaido University, Sapporo, Japan¹

PCP7-9 13:45–15:45

Paramagnetic and Glass States in YBCO Film Containing Nanorods at Low Magnetic Fields

*Hiroyuki Deguchi¹, Akira Harada¹, Tomoya Yamada¹, Masaki Mito¹, Tomoya Horide¹, Kaname Matsumoto¹

Faculty of Engineering, Kyushu Institute of Technology¹

PCP7-10 13:45–15:45

Effects of chirality of a helical magnetic field on a superconductor

*Saoto Fukui¹, Masaru Kato¹, Yoshihiko Togawa², Osamu Sato³

Dept. of Mathematical Sciences, Osaka Prefecture Univ., Japan¹ Dept. of Physics and Electronics, Osaka Prefecture Univ., Japan² Osaka Prefecture University College of Technology³

PCP7-11 13:45–15:45

Theoretical Study of Spontaneous Half-quantized Vortices in 3D d-dot model

*Norio Fujita¹, Masaru Kato¹, Takekazu Ishida¹

Osaka Prefecture University (OPU), Japan¹

PCP7-12 13:45–15:45

Impurity effects on critical temperatures for nanostructured superconductors

*Masaki Umeda¹, Masaru Kato¹

Osaka Prefecture University¹

PCP7-13 13:45–15:45

Critical states in superconducting complex structures

*Shinsuke Ooi¹, Masaru Kato¹

Dept. of Mathematical Sciences, Osaka Prefecture Univ., Japan¹

PCP7-14 13:45–15:45

Review of Quantum Electrical Standards and the Implementation of the 'Revised SI'

*Nobu-Hisa Kaneko¹

National Institute of Advanced Industrial Science and Technology $(\mbox{AIST})^1$

Josephson junction

Chairperson: Tsuyoshi Tamegai (The University of Tokyo)

PCP8-1 13:45–15:45

Control of a single vortex in a stack of intrinsic Josephson junctions

*Shuuichi Ooi¹, Minoru Tachiki¹, Takashi Mochiku¹, Kazuto Hirata¹, Kazunori Komori¹, Shunichi Arisawa¹

National Institute for Materials Science¹

PCP8-2 13:45–15:45

Fabrications of Small and High-quality Intrinsic Josephson Junctions by Combinatorial Method of Ar-ion and Focused Ga-ion Etchings

*Shumpei Umegai¹, Ayami Yamaguchi¹, Yoshihiro Kakizaki¹, Daiki Kakehi¹, Haruhisa Kitano¹

Dept. of Physics and Mathematics, Aoyama Gakuin Univ., Japan¹

PCP8-3 13:45–15:45

Dynamics of Phase Switch in the Intrinsic Josephson Junctions Made of Bi2212 with Perfectly-stoichiometric Cation Compositions

*Yuji Watabe¹, Shumpei Umegai¹, Haruka Ohnuma¹, Ayami Yamaguchi¹, Jun-ichi Shimoyama¹, Haruhisa Kitano¹

Dept. of Physics and Mathematics, Aoyama Gakuin Univ., Japan¹

PCP8-4 13:45–15:45

Uncertainty analysis of the Boltzmann constant measured by Johnson noise thermometry using superconducting integrated circuit

*Chiharu Urano¹, Kazuaki Yamazawa², Nobu-Hisa Kaneko¹

National Metrology Institute of Japan, AIST¹ National Institute of Technology and Evaluation²

PCP8-5 13:45–15:45

Spatiotemporal Dynamics and Collective Phenomena in a Driven Josephson Junction Network

*T. Kawaguchi¹

Department of Physics, Toho University, Japan¹

Dec. 15 (Fri.) Electronic Devices D1+D2

Electronics devices

Chairperson: Yoshimi Hatsukade (Kindai University)

EDP1-1 13:45–15:45

Neuro-inspired Quantum Associative Memory Model

*Yoshihiro Osakabe¹, Hisanao Akima¹, Masao Sakuraba¹, Mitsunaga Kinjo², Shigeo Sato¹

Research Inst. of Electrical Communication, Tohoku Univ., Japan¹ Department of Electrical and Electronics Engineering, University of the Ryukyus, Japan²

EDP1-2 13:45–15:45

Double-Flux-Quantum Amplifier with a Single-Flux-Biasing Line

*Yuma Arai¹, Tomoki Watanabe¹, Komei Higuchi¹, Hiroshi Shimada¹, Yoshinao Mizugaki¹

The University of Electro-Communications¹

EDP1-3 13:45–15:45

A random-access-memory cell based on quantum flux parametron with three control lines

*Hiroshi Takayama¹, Naoki Takeuchi^{2,3}, Yuki Yamanashi^{1,2}, Nobuyuki Yoshikawa^{1,2}

Graduate School of Engineering, Yokohama National University¹ Institute of Advanced Sciences, Yokohama National University² PRESTO, Japan Science and Technology Agency³

EDP1-4 13:45–15:45

Proposal of superconducting analog to digital converter using quantum flux parametron

*Takashi Matsushima¹, Yuki Yamanashi¹, Naoki Takeuchi¹, Nobuyuki Yoshikawa¹

Department of Electrical and Computer Eng., Yokohama National University $^{\rm 1}$

EDP1-5 13:45–15:45

Study on Integer-Number Parallel Divider Based on Single Flux Quantum Logic

*Akiyoshi Sanada¹, Yuki Yamanashi¹, Nobuyuki Yoshikawa¹

Yokohama National University¹

EDP1-6 13:45–15:45

Design of an arithmetic logic unit and a data shifter for adiabatic quantum-flux-parametron-based microprocessor

*Christopher L. Ayala¹, Qiuyun Xu², Ro Saito², Naoki Takeuchi¹, Yuki Yamanashi^{1, 2}, Nobuyuki Yoshikawa^{1,2}

Inst. of Advanced Sciences, Yokohama National Univ., Japan¹ Department of Electrical Engineering and Computer Engineering, Yokohama National Univ., Japan²

EDP1-7 13:45–15:45

Development of the Large-scale Superconducting Nanowire Single-photon Detector Imaging Array

*Masahiro Yabuno¹, Shigeyuki Miyajima¹, Shigehito Miki^{1,2}, Taro Yamashita^{1,3}, Hirotaka Terai¹

National Institute of Information and Communications Technology, Kobe, Japan¹

Graduate School of Engineering Faculty of Engineering, Kobe University, Japan²

PRESTO, Japan Science & Technology Agency, Kawaguchi, Japan³

EDP1-8 13:45–15:45

Study on Multipoint Guided Wave Measurement Technique on Pipes using HTS-SQUID NDI System

*Yoshimi Hatsukade¹, Natsuki Masutani¹, Yuki Azuma¹, Kazuya Sato¹, Tarou Yoshida¹

Kindai University¹

EDP1-9 13:45–15:45 Ultra Low Field SQUID-MRI using Non-Resonant Cu Wound Flux Transformer

*Kazuma Demachi¹, Taiga Tanaka¹, Seiichiro Ariyoshi¹, Saburo Tanaka¹

National University Corporation Toyohashi University of ${\rm Technology}^1$

EDP1-10 13:45–15:45

Constructing a Vector Scanning SQUID System

*THE DANG VU^{1,2}, Masaki Toji¹, Atsuki Ito¹, Yoshitsugu Ninomiya¹, Shigeyuki Miyajima³, Thanh Huy Ho², Hiroaki Shishido^{1,4}, Masaru Kato^{4,5}, Masaaki Maezawa⁶, Mutsuo Hidaka⁶, Masahiko Hayashi⁷, Takekazu Ishida^{1,4}

Dept. of Physics and Electronics, Osaka Prefecture Univ., Japan¹ University of Sciences, Vietnam National University HCMC, Ho Chi Minh, Viet Nam²

National Inst. of Information & Communications Technology, Japan³ NanoSquare Research Inst., Osaka Prefecture Univ., Japan⁴

Dept. of Mathematical Sciences, Osaka Prefecture Univ., Japan⁵ National Inst. of Advanced Industrial Science & Technology, Japan⁶ Faculty of Education and Human Studies, Akita University, Japan⁷

EDP1-11 13:45–15:45

Precision measurements of transuranium elements using superconducting transition edge sensor

*Yoshitaka Miura¹, Yuya Ishii¹, Tomoya Irimatsugawa¹, Masashi Ohno¹, Hiroyuki Takahashi¹, Takashi Yasumune², Koji Takasaki², Chikara Ito², Satoshi Kohujiro³

The University of Tokyo¹

Japan Atomic Energy Agency²

National Institute of Advanced Industrial Science and Technology 3

EDP1-12 13:45–15:45

Study on Lumped Element Kinetic Inductance Detectors for Light Dark Matter Searches Using Liquid Helium

*Yosuke Kida¹, Hirokazu Ishino¹, Atsuko Kibayashi¹, Yosuke Yamada¹, Naoto Hidehira¹, Masashi Hazumi^{2,3}, Nobuaki Sato², Hirotake Yamamori⁴, Fuminori Hirayama⁴, Satoshi Kohjiro⁴

Department of Physics, Okayama University¹ Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization²

Kavli Institute for the Physics and Mathematics of the Universe³ Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology⁴

EDP1-13 13:45–15:45

Flip-chip bonding technology for high performance STJ array detector using superconducting bumps

*Soki Hatakeyama¹, Hiroshi Nakagawa², Katsuya Kikuchi², Masahiro Aoyagi², Masato Naruse¹, Hiroaki Myoren¹, Tohru Taino¹

Saitama Univ.¹ AIST²

EDP1-14 13:45–15:45

Development and evaluation of Multi-Layer Superconducting detectors for the CMB polarization observation

*Munehisa Semoto¹, Satoru Mima², Kenji Kiuchi², Masato Naruse¹, Chiko Otani^{2,3}, Osamu Tajima⁶, Shugo Oguri², Junya Suzuki⁴, R.M.T Damayanthi⁵, Tohru Taino¹

Saitama University. Japan¹ RIKEN. Japan² Tohoku University. Japan³ KEK. Japan⁴ University of Moratuwa. Sri Lanka⁵ Kyoto university. Japan⁶

Electronics devices and fabrication

Chairperson: Naoto Sekiya (Yamanashi University)

EDP2-1 13:45–15:45

Neutron signal features of Nb-based kinetic inductance detector with ^{10}B convertor

*Yuya Miki¹, Hiroyuki Yamaguchi¹, Yuki Iizawa¹, Hiroaki shishido^{1,2}, Kenji M Kojima^{3,4}, Kenichi Oikawa⁵, Masahide Harada⁵, Shigeyuki Miyajima^{2,6}, Mutsuo Hidaka⁷, Takayuki Oku⁵, Kazuhio Soyama⁵, Takekazu Ishida^{1,2}

Dept. of Physics and Electronics, Osaka Prefecture Univ., Japan^1 NanoSquare Research Inst., Osaka Prefecture Univ., Japan^2

Muon Science Laboratory and Condensed Matter Research Center, Inst. of Materials Structure Science, KEK, Japan^3 $\,$

Department of Materials Structure Science, The Graduate University for Advanced Studies, Tsukuba, Japan⁴

Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, Tokai, Japan^5

Advanced ICT Research Institute, NICT, Kobe, Japan⁶

National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba⁷

EDP2-2 13:45–15:45

Electrodynamic Theory for the Operation Principle of Superconducting Delay-line Kinetic Inductance Detector

*Tomio Koyama¹, Takekazu Ishida^{1,2}

Dept. of Physics and Electronics, Osaka Prefecture University 1 Inst. for Nano-Fabrication Researcd, Osaka Prefecture Univ. 2

EDP2-3 13:45–15:45

Signal propagation in delay-line kinetic inductance detector under DC bias current

*Yuki Iizawa¹, Hiroyuki Yamaguchi¹, Yuya Miki¹, Kazuma Nishimura¹, Hiroaki Shishido^{1,2}, Kenji M. Kojima³, Kenichi Oikawa⁴, Masahide Harada⁴, Shigeyuki Miyajima^{2,5}, Mutsuo Hidaka⁶, Takayuki Oku⁴, Kazuhiko Soyama⁴, Tomio Koyama⁷, Takekazu Ishida¹

Dept. of Physics and Electronics, Osaka Prefecture Univ., Japan¹ NanoSquare Research Inst., Osaka Prefecture Univ., Japan²

Muon Science Laboratory and Condensed Matter Research Center, Institute of Materials Structure Science, KEK, Japan³ Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan⁴

Advanced ICT Research Institute, NICT, Kobe, Japan⁵

National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan⁶

Institute for Materials Research, Tohoku University, Japan⁷

EDP2-4 13:45–15:45

1 dimensional X-ray imager utilizing a superconducting strip line with a delay line structure

*Chiharu Watanabe¹, Nobuyuki Zen¹, Go Fujii¹, Kazumasa Makise¹, Masahiro Ukibe¹, Masataka Ohkubo¹

AIST, Nanoelectronics Research Institute¹

EDP2-5 13:45–15:45

Study for the Operating Principle of Superconducting Strip Photon Detectors (SSPDs)

*Nobuyuki Zen¹, Yutaka Abe², Go Fujii¹, Yuma Tomitsuka², Yuki Yamanashi², Yasunori Mawatari¹, Nobuyuki Yoshikawa²

National Institute of Advanced Industrial Science and Technology, $JAPAN^1$

Yokohama National University, JAPAN²

EDP2-6 13:45–15:45

HTS Filter with Dielectric Rods For Tuning the Center Frequency and Trimming the Passband Characteristics

*Takahiro Unno¹, Naoto Sekiya¹

University of Yamanashi¹

EDP2-7 13:45–15:45 Design of wireless power transfer system from HTS

spiral coil to copper spiral coil

*Shinya Kobayashi¹, Naoto Sekiya¹

University of Yamanashi¹

EDP2-8 13:45–15:45

Pico Pulse Response Analysis of High-Tc Josephson Weak-Link using Time Dependent Ginzburg-Landau Model

*Shigeru Yoshimori¹

Faculty of Engineering, Takushoku University, Japan¹

EDP2-9 13:45–15:45

Microfabrication of MgB_2 by a conventional lift-off process

*Takatoshi Nakagami¹, Hiroaki Shishido^{1,2}, Takekazu Ishida^{1,2}

Department of Physics and Electronics, Japan^1 NanoSquare Research Institute, Japan^2 $\,$

EDP2-10 13:45–15:45

Replacement of NbN by $YBa_2Cu_3O_{76}$ in Superconducting Thin Film Coil in a Spiral Trench on a Si-Wafer for Compact SMESs

*Yushi Ichiki¹, Kazuhiro Adachi², Yasuhiro Suzuki², Akihisa Ichiki², Tatsumi Hioki², Che-Wei Hsu³, Shinya Kumagai³, Minoru Sasaki³, Joo-Hyong Noh⁴, Osamu Takai⁴, Hideo Honma⁴, Tomoyoshi Motohiro^{1,2}

Graduate School of Engineering, Nagoya University, Japan¹ Green Mobility Research Institute, Institutes of Innovation for Future Society, Nagoya University, Japan²

Graduate School of Engineering, Toyota Technological Inst., Japan³ Materials & Surface Engineering Research Institute, Kanto-Gakuin University, Japan⁴

EDP2-11 13:45–15:45

Numerical Analysis of Rapid Single-Flux-Quantum Circuits Composed of 0- and π -Shifted Josephson Junctions

*Tomohiro Kamiya¹, Soya Taniguchi¹, Kyosuke Sano¹, Masamitsu Tanaka¹, Akira Fujimaki¹

Department of Electronics, Nagoya University, Japan¹

EDP2-12 13:45–15:45

High Impedance Josephson Junction Arrays for Voltage Standard Circuits

*Hirotake Yamamori¹, Michitaka Maruyama², Yasutaka Amagai², Takeshi Shimazaki²

Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology $^{\rm 1}$

National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology 2

EDP2-13 13:45–15:45 Negative resistance in niobium titanium nitride nanowires for flux-based superconducting devices

*Kazumasa Makise¹, Takayuki Asano³, Bunju Shinozaki², Masahiro Ukibe¹

National Institute of Advanced Industrial Science and Technology¹ Kyushu University² University of Fukui³

Dec. 15 (Thu.) Large Scale System Applications

B1 + B2

Bulk applications

Chairperson: Kazuya Yokoyama (Ashikaga Institute of Technology)

APP7-1 13:45–15:45

Study of bulk HTS rotating machine using Closed-Circuit Magnetization

*Yunosuke Suzuki¹, Keita Tsuzuki¹, Sho Yamamura¹, Dai Oikawa², Hiroya Ando¹, Takehiko Tsukamoto²

Department of Information and Computer Engineering, National Institute of Technology, Toyota College $^{\rm 1}$

Department of Electrical and Electronic Engineering, National Institute of Technology, Toyota College²

APP7-2 13:45–15:45

Development and Load Test of a Radial Gap Bulk HTS Synchronous Machine for Marine Applications

*Clement Bocquel¹, Motohiro Miki¹, Erasmus Shaanika¹, Keita Tsuzuki^{1,5}, Brice Felder^{1,6}, Tetsuya Ida¹, Mitsuru Izumi¹, Steven Englebretson², Jere Kolehmainen³, Hidekazu Teshima⁴, Robert Chin², Mitsuru Morita⁴

Department of Marine and Energy Resource, Tokyo University of Marine Science and Technology, Japan¹

US Corporate Research Center, ABB Inc., USA²

Motors and Generators, ABB Oy, Finland³

Advanced Technology Research Laboratories, Nippon Steel Sumitomo Metals Co., Japan⁴

Department of Information and Computer Engineering, National Institute of Technology, Toyota College, Japan⁵

Cryogenic Department, Suzuki Shokan Co., Ltd., Japan⁶

APP7-3 13:45–15:45 (Moved to APP1-3)

APP7-4 13:45–15:45

Evaluation of trapped field characteristic of bulk magnet system using various type refrigerators

*Kazuya Yokoyama¹, Atsushi Katsuki¹, Atsuro Miura¹, Tetsuo Oka²

Ashikaga Institute of Technology¹ Niigata University²

Magnetic separation

Chairperson: Kazuya Yokoyama (Ashikaga Institute of Technology)

APP8-1 13:45–15:45

Removal of humic acid and hazardous heavy metals in water environment by magnetic separation utilizing rice hull magnetic activated carbon

*Keisuke Ishida¹, Tatsuya Shiina¹, Osuke Miura¹

Dept. of Electrical and Electronics Engineering, Tokyo Metropolitan University, Japan^1

APP8-2 13:45–15:45

Numerical Simulation on Behavior of Magnetic beads in Magnetic Filter for Medical Protein Screening System using High Gradient Magnetic Separation

*Mikihisa Kubota¹, Yuki Mori^{1,2}, SeokBom Kim², Hiroshi Ueda¹

Graduate School of Natural Science and Technology, Okayama University, Japan¹

Okayama University, Japan²

APP8-3 13:45–15:45

Magnetic separation system of boiler feed water scale in thermal power plants with superconducting magnet

*Hidehiko Okada¹, Noriyuki Hirota¹, Fumihito Mishima², Shigehiro Nishijima², Yoko Akiyama³, Hidehki Matuura⁴, Seitoku Nambu⁴, Tomokazu Sekine⁵

National Institute for Materials Science, Japan¹ Fukui University of Technology, Japan² Osaka Universuty, Japan³ Shikoku Research Institute Inc., Japan⁴ Ebara Industrial Cleaning Co., Ltd., Japan⁵

APP8-4 13:45–15:45

Levitating separation of precious metals utilizing magneto-Archimedes effect in high gradient magnetic fields

*Kenichi Yamagishi¹, Daiki Yamamoto¹, Osuke Miura¹

Electrical and Electronic Engineering, Graduate School of Science and Engineering, Tokyo Metropolitan University, Japan $^{\rm 1}$

Magnetic levitation

Chairpersons: Shoichi Yokoyama (Mitsubishi Electric)

APP9-1 13:45–15:45

Numerical studies on the dynamic responses of levitated high-temperature superconductor with a strongly coupled thermo-electromagnetic model

*Changqing Ye¹, Guangtong Ma¹, Tianyong Gong^{1,2}, Wenjiao Yang¹, Kun Liu¹

State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China $^{\rm 1}$

College of Electrical Engineering, Southwest Jiaotong University, Chengdu, China $^{\rm 2}$

APP9-2 13:45–15:45

A man-loading hybrid maglev vehicle employing PML and SML

*Ruixue Sun¹, Jun Zheng¹, Jipeng Li¹, Haitao Li¹, Zigang Deng¹

Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong Univ., Chengdu, P. R. China¹

APP9-3 13:45–15:45

Operating characteristics of high-temperature superconducting maglev under a low-pressure environment

*Wuyang Lei¹, Nan Qian¹, Jun Zheng¹, Yong Zhang¹, Lian Jin¹, Shijie Bao¹, Zigang Deng¹

Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong Univ., Chengdu, P. R. China¹

APP9-4 13:45–15:45

Levitation Stability of Superconducting Stator adding Ring Shaped Magnet

*Muneo Futamura¹, Ryo Shindo¹

Akita Prefectural University¹

Dec. 15 (Fri.) Late News (Poster) **B1**

B1 + B2

Chairperson: Hirofumi Yamasaki (AIST)

LNP-1 13:45–15:45

Laying of the superconducting feeder cable along railway line

*Masaru Tomita^{1,2}, Yusuke Fukumoto², Tomoyuki Akasaka², Kenji Suzuki², Atsushi Ishihara², Yusuke Kobayashi²

Research & Development Promotion Division, Railway Technical Research Institute, Japan¹ Applied Superconductivity Laboratory, Materials Technology Division, Railway Technical Research Institute, Japan²

LNP-2 13:45–15:45

Dynamic performance of high temperature superconducting maglev system

*Li-Feng Zhao^{1, 2}, Lin-Bo Li^{1, 2}, Meng-Liang Yao^{1, 2}, Da-Jin Zhou^{1, 2}, Jing Jiang^{1, 2}, Yong Zhang^{1, 2}, Yong Zhao^{1, 2}

Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, Chengdu, China¹ Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu, China²

LNP-3 13:45–15:45

Realization and First Tests Results of the EuCARD 5.4-T REBCO Dipole Magnet

*P. Fazilleau¹, F.Borgnolutti¹, D. Bouziat¹, M. Durante¹, J.M. Gheller¹, F. Molinié¹, P. De Antoni¹

CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France¹

LNP-4 13:45–15:45

No-Insulation REBCO Pancake Coil with Stainless Steel Co-Winding Tape – Tests under High Resistive Background Field and High Current at 4.2 K

*T. Lécrevisse¹, T. Benkel^{2, 3}, A. Badel³, P. Tixador³, X. Chaud², P. Fazilleau¹

CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France¹ Laboratoire National des Champs Magnétiques Intenses (LNCMI), CNRS, Univ. Grenoble Alpes, Grenoble, France² University Grenoble Alpes/CNRS, G2ELab/ Institut Néel, Grenoble, France³

LNP-5 13:45–15:45

Numerical Simulation of Instabilities in Magnetic Vortices in Type-II Superconductor under Non-Uniform Magnetic fields using Time-Dependent Ginzburg-Landau Equations

*Hasnain Mehdi Jafri¹, Xingqiao Ma¹, Congpeng Zhao¹, Houbing Huang¹, Zhuhong Liu¹

Department of Physics, University of Science and Technology Beijing, Beijing, P. R. China¹

LNP-6 13:45–15:45

The improvement of MgB_2 prepared by hot-pressing sintering method with the MgB_4 precursor powder

*Hong Zhang,1, Yong Zhao1,2, Yong Zhang1

Key Laboratory of Maglev Train and Maglev Technology of Ministry of Education, Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu, China¹ School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, Australia²

LNP-7 13:45–15:45

The effects of Mg precursor powder on the MgB_2 superconductor prepared by diffusion method

*Yong Zhao^{1,2}, Hong Zhang¹, Yong Zhang¹

Key Laboratory of Maglev Train and Maglev Technology of Ministry of Education, Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu, China¹ School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, Australia²

LNP-8 13:45–15:45

Installation Design of 23kV 50MVA Class HTS Cable in S.Korea Grid

Young-jin Won¹, *Dong Cheol Koo¹, Joong-gu Jeon¹, Jae Hwan Song¹, Jin Bae NA², Young Woog Kim²

Korea Electric Power Corporation 1 LS Cable & System 2

LNP-9 13:45–15:45

Constitutive Equation of Multiferroic Bismuth Ferrite under the Framework of Onsager's Reciprocity Relations

*Upasana Panigrahi¹, Shuichi Torii²

Advanced Technology, Kumamoto University, Japan¹ Dept. of Advanced Mechanical Systems, Kumamoto Univ., Japan²

LNP-10 13:45–15:45

Upper critical fields and critical current densities characteristics of Nb₃Sn doped with fourth elements

*Yuya Tanabe¹, Tomohiro Yonenaka¹, Rina Yonezuka¹, Masaru Kiuchi¹, Edmund Soji Otabe¹, Teruo Matsushita¹, Yoshiyuki Monju², Taiji Mizuta², Kyoji Tachikawa^{3,4}, Kozo Osamura⁵

Kyushu Institute of Technology¹ Osaka Alloying Works² National Institute for Materials Science³ Tokai University⁴ Research Institute for Applied Sciences⁵

LNP-11 13:45–15:45 Novel Discovery of Nano Tubular YBa₂Cu₃O_x

*William Rieken¹, Atit Bhargava^{1,2}, Rie Horie³, Jun Akimitsu³, Hiroshi Daimon¹

Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan¹ Scotch College Melbourne, Hawthorn, Australia² Research Inst. for Interdisciplinary Science, Okayama Univ., Japan³

LNP-12 13:45–15:45

A simplified white box model for real-time application to estimate the magnet temperature of superconducting tokamaks

*Dong Keun Oh¹, Sang-Hee Hahn¹

National Fusion Research Institute, Daejeon, Korea¹

Correspondence

• For further information about the program, presentations, proceedings manuscripts, etc

ISS2017 secretariat TIA Central office, AIST Central 1 1-1-1 Umezono, Tsukuba, Ibaraki 305-8560, Japan. Fax: +81-29-862-6048 Email: ISS2017contact-ml@aist.go.jp

UPCOMING ISS2018

Tsukuba International Congress Center, Tsukuba, Japan

December 12 (Wed.) -14 (Fri.), 2018

ISS2017 Web site

http://iss2017.tokyo/